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Preface

In the fall 2003 MIC launched a new fifth semester course at the Technical University
of Denmark (course no. 33241, 5 ECTS) to provide a general and broad introduction to
theoretical aspects of the new field of lab-on-a-chip systems.

In the first run of the course I tried to use existing books as basic material. However,
it soon became clear that these books did not cover the material I wanted to teach. I let
more and more of the teaching rely on substantial exercises, many of which were based
on experimental problems from the laboratories at MIC. These exercises form the basis of
the lecture notes at hand. The notes are being written during the course from September
to December 2004. The first chapter is ready for the first lecture, while the rest will follow
at a rate of one chapter per week.

I hope that the students will bear over with the many printing mistakes and less than
optimal formulations that undoubtedly will appear, and that they will participate actively
in the efforts to create new and up-to-date teaching material at the right level of difficulty.
Hopefully, these lecture notes will be both inspiring and challenging.

Henrik Bruus
MIC – Department of Micro and Nanotechnology

Technical University of Denmark
30 August 2004

This second edition of the lecture notes has benefited from numerous corrections and com-
ments from my students and colleagues. Moreover, three new chapters and two appendices
have been added. I hope that the notes appear even more useful in their present form.

Henrik Bruus
MIC – Department of Micro and Nanotechnology

Technical University of Denmark
28 August 2005
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iv PREFACE

As with the previous editions, this third edition of the lecture notes has benefited from
numerous corrections and comments from my students and colleagues. Moreover, solu-
tions to most of the exercises as well as a new chapter on acoustics in microfluidcs have
been added. I hope that these last modifications have improved the lecture notes further.

Henrik Bruus
MIC – Department of Micro and Nanotechnology

Technical University of Denmark
29 August 2006
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Chapter 1

Basic concepts in microfluidics

The field of lab-on-a-chip systems has evolved dramatically since it was initiated in the
early 1990ies. It is a field that is mainly driven by technological applications, the main
vision being to develop entire bio/chemical laboratories on the surface of silicon or polymer
chips. Many of the techniques developed the past fifty years in connection with the
revolutionary microelectronics industry can be used to fabricate lab-on-chip systems. It
is, e.g., relatively easy to etch 100 µm wide channels for fluid handling at the surface of
silicon wafers using well-established protocols. But as we shall see, polymer-based lab-on-a-
chip systems have emerged the recent years, and these systems promise cheaper and faster
production cycles. The study of fluid motion in microsystems is denoted microfluidics.

There are several advantages of scaling down standard laboratories setups by a factor
of 1000 or more from the decimeter scale to the 100 µm scale. One obvious advantage is
the dramatic reduction in the amount of required sample. A linear reduction by a factor
of 103 amounts to a volume reduction by a factor of 109, so instead of handling 1 L or
1 mL a lab-on-a-chip system could easily deal with as little as 1 nL or 1 pL. Such small
volumes allow for very fast analysis, efficient detection schemes, and analysis even when
large amounts of sample are unavailable. Moreover, the small volumes makes it possible to
develop compact and portable systems that might ease the use of bio/chemical handling
and analysis systems tremendously. Finally, as has been the case with microelectronics, it
is the hope by mass production to manufacture very cheap lab-on-a-chip systems.

Lab-on-a-chip (LOC) systems can be thought of as the natural generalization of the
existing integrated electronic circuits (IC) and microelectromechanical systems (MEMS).
Why confine the systems to contain only electric and mechanical parts? Indeed, a lab-
on-chip system can really be thought of a the shrinking of an entire laboratory to a chip.
One example of a system going in that direction is shown in Fig. 1.1: an integrated
lab-on-a-chip system fabricated at MIC , DTU. This particular system contains optical
(lasers and wave guides), chemical (channels and mixers), and electronic (photodiodes)
components. Perhaps, only our imagination sets the limits of what could be in a lab-on-
a-chip system. It is expected that lab-on-a-chip systems will have great impact in biotech
industries, pharmacology, medical diagnostics, forensics, environmental monitoring and
basic research.

1
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(a) (b)

Figure 1.1: (a) A picture of a 2 cm by 3 cm lab-on-a-chip system fabricated at MIC in 2003
for optical analysis of chemical reactions. The system is a hybrid polymer/silicon device.
(b) Overview of the components of the system. The device is made on a silicon substrate
containing the integrated photodiodes, while the laser, waveguides, mixer and cuvette
are made in a polymer film on top of the substrate. Courtesy the groups of Geschke,
Kristensen, and Kutter (MIC, DTU).

The fundamental laws of Nature underlying our understanding of the operation of lab-
on-a-chip systems are all well-known. We shall draw on our knowledge from mechanics,
fluid dynamics, electromagnetism, thermodynamics and physical chemistry during this
course. What is new, however, is the interplay between many different forces and the
change of the relative importance of these forces in the micro-regime as compared to
the macro-regime. Surface effects that often can be neglected at the macro-scale become
increasingly dominant in microfluidics as size is diminished. For example, it turns out that
volume forces like gravity and inertia that are very prominent in our daily life become
largely unimportant in lab-on-a-chip systems. Instead, we must get used to the fact
that surface related forces, like surface tension and viscosity, become dominant. As a
consequence, we must rebuild our intuition and be prepared for some surprises on the
way.

1.1 Fluids and fields

The main purpose of a lab-on-a-chip system is to handle fluids. A fluid, i.e., either a liquid
or a gas, is characterized by the property that it will deform continuously and with ease
under the action of external forces. A fluid does not have a preferred shape, and different
parts of it may be rearranged freely without affecting the macroscopic properties of the
fluid. In a fluid the presence of shear forces, however small in magnitude, will result in
large changes in the relative positions of the fluid elements. In contrast, the changes in
the relative positions of the atoms in a solid remain small under the action of any small
external force. When applied external forces cease to act on a fluid, it will not necessarily
retract to its initial shape. This property is also in contrast to a solid, which relaxes to
its initial shape when no longer influenced by external forces.
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(a) (b) (c)

Figure 1.2: (a) A sketch of a typical solid with 0.1 nm wide molecules (atoms) and a lattice
constant of 0.3 nm. The atoms oscillate around the indicated equilibrium points forming
a regular lattice. (b) A sketch of a liquid with the same molecules and same average
inter-molecular distance 0.3 nm as in panel (a). The atoms move around in an thermally
induced irregular pattern. (c) A sketch of a gas with the same atoms as in panel (a).
The average inter-atomic distance is 3 nm, and the motion is free between the frequent
inter-atomic collisions.

1.1.1 Fluids: liquids and gases

The two main classes of fluids, the liquids and the gases, differ primarily by the densities
and by the degree of interaction between the constituent molecules as sketched in Fig. 1.2.
The density ρgas ≈ 1 kg m−3 of an ideal gas is so low, at least a factor of 103 smaller
than that of a solid, that the molecules move largely as free particles that only interact
by direct collisions at atomic distances, ≈ 0.1 nm. The relatively large distance between
the gas molecules, ≈ 3 nm, makes the gas compressible. The density ρliq ≈ 103 kg m−3

of a liquid is comparable to that of a solid, i.e., the molecules are packed as densely as
possible with a typical average inter-molecular distance of 0.3 nm, and a liquid can for
many practical purposes be considered incompressible.

The inter-molecular forces in a liquid are of quite intricate quantum and electric nature
since each molecule is always surrounded by a number of molecules within atomic distances.
In model calculations of simple liquids many features can be reproduced by assuming the
simple Lennard–Jones pair-interaction potential, VLJ(r) = 4ε

[
(σ/r)12 − (σ/r)6

]
, between

any pair of molecules. Here r is the distance betweens the molecules, while the maximal
energy of attraction ε and the collision diameter σ are material parameters typical of the
order 100 K×kB and 0.3 nm, respectively. The corresponding inter-molecular force is given
by the derivative FLJ(r) = −dVLJ/dr. The Lennard–Jones potential is shown in Fig. 1.3a
and discussed further in Exercise 1.2.

At short time intervals and up to a few molecular diameters the molecules in a liquid
are ordered almost as in a solid. However, whereas the ordering in solids remains fixed in
time and space,1 the ordering in liquids fluctuates. In some sense the thermal fluctuations
are strong enough to overcome the tendency to order, and this is the origin of the ability

1the molecules in a solid execute only small, thermal oscillations around equilibrium points well-
described by a regular lattice
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Figure 1.3: (a) The Lennard–Jones pair-potential VLJ(r) often used to describe the in-
teraction potential between two molecules at distance r, see also Exercise 1.2. For small
distances, r < r0 ≈ 0.3 nm the interaction forces are strongly repulsive (gray region), while
for large distances, r > r0, they are weakly attractive. (b) A sketch of some measured
physical quantity of a liquid as a function of the volume Vprobe probed by some instru-
ment. For microscopic probe volumes (left gray region) large molecular fluctuations will
be observed. For mesoscopic probe volumes (white region) a well-defined local value of
the property can be measured. For macroscopic probe volumes (right gray region) gentle
variations in the fluid due to external forces can be observed.

of liquids to flow.

1.1.2 The continuum hypothesis and fluid particles

Although fluids are quantized on the length scale of inter-molecular distances (of the order
0.3 nm for liquids and 3 nm for gases), they appear continuous in most lab-on-a-chip
applications, since these typically are defined on macroscopic length scales of the order
10 µm or more. In this course we shall therefore assume the validity of the continuum
hypothesis, which states that the macroscopic properties of a fluid is the same if the fluid
were perfectly continuous in structure instead of, as in reality, consisting of molecules.
Physical quantities such as the mass, momentum and energy associated with a small
volume of fluid containing a sufficiently large number of molecules are to be taken as the
sum of the corresponding quantities for the molecules in the volume.

The continuum hypothesis leads to the concept of fluid particles, the basic constituents
in the theory of fluids. In contrast to an ideal point-particle in ordinary mechanics, a fluid
particle in fluid mechanics has a finite size. But how big is it? Well, the answer to this
question is not straightforward. Imagine, as illustrated in Fig. 1.3b, that we probe a given
physical quantity of a fluid with some probe sampling a volume Vprobe of the fluid at each
measurement. Let Vprobe change from (sub-)atomic to macroscopic dimensions. At the
atomic scale (using, say, a modern AFM or STM) we would encounter large fluctuations
due to the molecular structure of the fluid, but as the probe volume increases we soon
enter a size where steady and reproducible measurements are obtained. This happens
once the probe volume is big enough to contain a sufficiently large number of molecules,
such that well-defined average values with small statistical fluctuations are obtained. As
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studied in Exercise 1.3 a typical possible side length λ∗ in a cubic fluid particle is

λ∗ ≈ 10 nm. (1.1)

Such a fluid particle contains approximately 4×104 molecules and exhibits number fluctu-
ations of the order 0.5%. If the size of the fluid particle is taken too big the probe volume
could begin to sample regions of the fluid with variations in the physical properties due to
external forces. In that case we are beyond the concept of a constituent particle and enters
the regime we actually would like to study, namely, how do the fluid particles behave in
the presence of external forces.

A fluid particle must thus be ascribed a size λ∗ in the mesoscopic range. It must
be larger than microscopic lengths (' 0.3 nm) to contain a sufficiently large amount of
molecules, and it must be smaller than macroscopic lengths (' 10 µm) over which external
forces change the property of the fluid. Of course, this does not define an exact size, and in
fluid mechanics it is therefore natural to work with physical properties per volume, such as
mass density, energy density, force density and momentum density. In such considerations
the volume is taken to the limit of a small, but finite, fluid particle volume, and not to
the limit of an infinitesimal volume.

The continuum hypothesis breaks down when the system under consideration ap-
proaches molecular scale. This happens in nanofluidics, e.g., in liquid transport through
nano-pores in cell membranes or in artificially made nano-channels.

1.1.3 The velocity, pressure and density field

Once the concept of fluid particles in a continuous fluid has been established we can move
on and describe the physical properties of the fluid in terms of fields. This can basically
be done in two ways as illustrated in Fig. 1.4 for the case of the velocity field. In these
notes we shall use the Eulerian description, Fig. 1.4a, where one focuses on fixed points
r in space and observe how the fields evolve in time at these points, i.e., the position r
and the time t are independent variables. The alternative is the Lagrangian description,
Fig. 1.4b, where one follows the history of individual fluid particles as the move through
the system, i.e., the coordinate ra(t) of particle a depends on time.

In the Eulerian description the value of any field variable F (r, t) is defined as the
average value of the corresponding molecular quantity Fmol(r

′, t) for all the molecules
contained in some liquid particle of volume ∆V(r) positioned at r at time t,

F (r, t) =
〈
Fmol(r

′, t)
〉
r′∈∆V(r)

. (1.2)

The field variables can be scalars (such as density ρ, viscosity η, pressure p, temperature
T , and free energy F), vectors (such as velocity v, current density J, pressure gradient ∇p,
force densities f , and electric fields E) and tensors (such as stress tensor σ and velocity
gradient ∇v).

To obtain a complete description of the state of a moving fluid it is necessary to know
the three components of the velocity field v(r, t) and any two of the thermodynamical
variables of the fluid, e.g., the pressure field p(r, t) and the density field ρ(r, t). All other
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Figure 1.4: (a) The velocity field v(r, t) in the Eulerian description at the point r at the two
times t−∆t and t. The spatial coordinates r are independent of the temporal coordinate
t. (b) The Lagrangian velocity fields v

(
ra(t), t

)
and v

(
rb(t), t

)
of fluid particles a (white)

and b (dark gray). The particles pass the point r at time t−∆t and t, respectively. The
particle coordinates ra,b(t) depend on t. Note that ra(t−∆t) = r and rb(t) = r.

thermodynamical quantities can be derived from these fields together with the equation
of state of the fluid.

1.2 SI units and mathematical notation

Notation is an important part in communicating scientific and technical material. Es-
pecially in fluid mechanics the mathematical notation is important due to the involved
many-variable differential calculus on the scalar, vector and tensor fields mentioned in
the previous section. Instead of regarding units and notation as an annoying burden the
student should instead regard it as part of the trade that need to be mastered by the true
professional. Learn the basic rules, and stick to them thereafter.

1.2.1 SI units

Throughout these notes we shall use the SI units. If not truly familiar with this system,
the name and spelling of the units, and the current best values of the fundamental physical
constants of Nature the reader is urged to consult the web-site of National Institute of
Standards and Technology (NIST) for constants, units, and uncertainty at

http://physics.nist.gov/cuu/ . (1.3)

A scalar physical variable is given by a number of significant digits, a power of ten and a
proper SI unit. The power of ten can be moved to the unit using the prefixes (giga, kilo,
micro, atto etc.). The SI unit can be written in terms of the seven fundamental units or
using the derived units. As an example the viscosity η of water at 20◦C is written as

η = 1.002× 10−3 kg m−1s−1 = 1.002 mPa s. (1.4)

Note the multiplication sign before the power of ten and the space after it, and note
that the SI units are written in roman and not in italics. Most type setting systems will
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automatically use italics for letters written in equations. Note also the use of space and
no multiplication signs between the units. Be aware that even though many units are
capitalized as are the names of the physicists given rise to them, e.g., Pa and Pascal, the
unit itself is never capitalized when written in full, e.g., pascal. Also, the unit is written
pascal without plural form whether there is one, five or 3.14 of them.

There will be two exceptions from the strict use of SI units. Sometimes, just as above,
temperatures will be given in ◦C, so be careful when inserting values for temperature in
formulae. Normally, a temperature T in an expression calls for values in kelvin. The other
exception from SI units is the atomic unit of energy, electronvolt (eV),

1 eV = 1.602× 10−19 J = 0.1602 aJ. (1.5)

Note, that it would be possible to use attojoule instead of electronvolt, but this is rarely
done.

1.2.2 Vectors, derivatives and the index notation

The mathematical treatment of microfluidic problems is complicated due to the presence
of several scalar, vector and tensor fields and the non-linear partial differential equations
that govern them. To facilitate the treatment some simplifying notation is called for.

First, a suitable coordinate system must be chosen. We shall encounter three: Carte-
sian coordinates (x, y, z) with corresponding unit vectors ex, ey, and ez; cylindrical coor-
dinates (r, φ, z) with corresponding unit vectors er, eφ, and ez; and spherical coordinates
(r, θ, φ) with corresponding unit vectors er, eθ, and eφ. The Cartesian unit vectors are
special since they are constant in space, whereas all other sets of unit vectors depend on
position in space. For simplicity, we postpone the usage of the curvilinear coordinates to
later chapters and use only Cartesian coordinates in the following.

The position vector r = (rx, ry, rz) = (x, y, z) can be written as

r = rx ex + ry ey + rz ez = x ex + y ey + z ez. (1.6)

In fact, any vector v can be written in terms of its components vi (where for Cartesian
coordinates i = x, y, z) as

v =
∑

i=x,y,z

vi ei ≡ vi ei (1.7)

In the last equality we have introduced the Einstein summation convention: per definition
a repeated index always implies a summation over that index. Other examples of this
handy notation, the so-called index notation, is the scalar product,

v · u = viui, (1.8)

the length v of a vector v,

v = |v| =
√

v2 =
√

v · v =
√

vivi, (1.9)
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and the ith component of the vector-matrix equation u = Mv,

ui = Mij vj . (1.10)

Further studies of the index notation can be found in Exercise 1.4.
For the partial derivatives of some function F (r, t) we use the symbols ∂i, with i =

x, y, z, and ∂t,

∂xF ≡ ∂F

∂x
, and ∂tF ≡ ∂F

∂t
, (1.11)

while for the total time-derivative, as, e.g., in the case of the Lagrangian description of
some variable F

(
r(t), t

)
following the fluid particles (see Fig. 1.4b), we use the symbol dt,

dtF ≡ dF

dt
= ∂tF +

(
∂tri

)
∂iF = ∂tF + vi∂iF. (1.12)

The nabla operator ∇ containing the spatial derivatives plays an important role in differ-
ential calculus. In Cartesian coordinates it is given by

∇ ≡ ex∂x + ey∂y + ez∂z = ei∂i. (1.13)

Note that we have written the differential operators to the right of the unit vectors. While
not important in Cartesian coordinates it is crucial when working with curvilinear coor-
dinates. The Laplace operator, which appears in numerous partial differential equations
in theoretical physics, is just the square of the nabla operator,

∇2 = ∇2 ≡ ∂i∂i. (1.14)

In terms of the nabla-operator the total time derivative in Eq. (1.12) can be written as

dtF
(
r(t), t

)
= ∂tF + (v ·∇)F. (1.15)

Concerning integrals, we denote the 3D integral measure by dr, so that in Cartesian
coordinates we have dr = dx dy dz, in cylindrical coordinates dr = rdr dφ dz, and in
spherical coordinates dr = r2dr sin θdθdz. We also consider definite integrals as operators
acting on the integrand, thus we keep the integral sign and the associated integral measure
together to the left of the integrand. As an example, the integral over a spherical body
with radius a of the scalar function S(r) is written as

∫

sphere
S(x, y, z) dxdydz =

∫

sphere
dr S(r) =

∫ a

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
dφ S(r, θ, φ). (1.16)

When working with vectors and tensors it is advantageous to use the following two
special symbols: the Kronecker delta δij ,

δij =
{

1, for i = j,
0, for i 6= j,

(1.17)
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and the Levi–Civita symbol εijk,

εijk =





+1, if (ijk) is an even permutation of (123) or (xyz),
−1, if (ijk) is an odd permutation of (123) or (xyz),

0, otherwise.
(1.18)

In the index notation the Levi–Cevita symbol appears directly in the definition of the
cross product of two vectors u and v,

(u× v)i ≡ εijkujvk. (1.19)

and in the definition of the rotation ∇ × v of a vector v. The expression for the ith
component of the rotation is:

(∇× v)i ≡ εijk∂jvk. (1.20)

To calculate in the index notation the rotation of a rotation, such as ∇ × ∇ × v, or
the rotation of a cross product it is very helpful to know the following expression for the
product of two Levi–Civita symbols with one pair of repeated indices (here k):

εijkεlmk = δilδjm − δimδjl. (1.21)

Note the plus sign when pairing index 1 with 1 and 2 with 2 (direct pairing), while a minus
sign appears when pairing index 1 with 2 and 2 with 1 (exchange pairing).

Let us end this short introduction to the index notation by an explicit example, namely
proof of the double cross product identity

a× b× c = (a · c)b− (a · b)c. (1.22)

First we write out the ith component of the left-hand side using the Levi–Civita symbol
for each cross product, one at a time,

(a× b× c) i =
[
a× (b× c)

]
i
= εijkaj(b× c)k

= εijkaj

(
εklmblcm

)
= εijkεlmk ajblcm, (1.23)

where in the last equation we have made an even permutation of the indices in the second
Levi-Civita symbol, εklm = εlmk. Finally, we use Eq. (1.21) to express the product of the
two Levi-Civita symbols as a linear combination of Kronecker deltas,

εijkεlmk ajblcm =
(
δilδjm − δimδjl

)
ajblcm = ajcjbi − ajbjci

= (a · c)bi − (a · b)ci =
[
(a · c)b− (a · b)c

]
i
, (1.24)

which is the ith component of the right-hand side of Eq. (1.22).

1.3 The continuity equation

We have now cleared the ground for the derivation of our first fundamental equation of
fluid mechanics, the continuity equation. This equation expresses the conservation of mass
in classical mechanics.
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Ω
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ρv

Figure 1.5: A sketch of the current density field ρv flowing through an arbitrarily shaped
region Ω. Any infinitesimal area da is associated with an outward pointing unit vector n
perpendicular to the local surface. The current through the area da is given by da times
the projection ρv · n of the current density on the surface unit vector.

1.3.1 Compressible fluids

We begin by considering the general case of a compressible fluid, i.e., a fluid where the
density ρ may vary as function of space and time. Consider an arbitrarily shaped, but
fixed, region Ω in the fluid as sketched in Fig. 1.5. The total mass M(Ω, t) inside Ω can
be expressed as a volume integral over the density ρ,

M(Ω, t) =
∫

Ω
dr ρ(r, t), (1.25)

where we have written the infinitesimal integration volume as dr. Since mass can neither
appear nor disappear spontaneously in non-relativistic mechanics, M(Ω, t) can only vary
if mass is flowing into or out from the region Ω through its surface ∂Ω. The mass current
density J is defined as the mass density ρ times the convection velocity v, or the mass
flow per oriented unit area per unit time (hence the unit kg m−2 s−1):

J(r, t) = ρ(r, t) v(r, t), (1.26)

where v is the Eulerian velocity field.
Since the region Ω is fixed the time-derivative of the mass M(Ω, t) can be calculated

either as a volume integral by using Eq. (1.25),

∂tM(Ω, t) = ∂t

∫

Ω
dr ρ(r, t) =

∫

Ω
dr ∂tρ(r, t), (1.27)

or as a surface integral over ∂Ω of the mass current density using Eq. (1.26) and Fig. 1.5,

∂tM(Ω, t) = −
∫

∂Ω
da n·

(
ρ(r, t)v(r, t)

)
= −

∫

Ω
dr ∇·

(
ρ(r, t)v(r, t)

)
. (1.28)

The last expression is obtained by applying Gauss’s theorem. The minus sign is there
since the mass inside Ω diminishes if ρv is parallel to the outward pointing surface vector
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n. From Eqs. (1.27) and (1.28) it follows immediately that
∫

Ω
dr

[
∂tρ(r, t) + ∇·

(
ρ(r, t)v(r, t)

)]
= 0. (1.29)

This results is true for any choice of region Ω. But this is only possible if the integrand is
zero. Thus we have derived the continuity equation,

∂tρ + ∇·(ρv)
= 0 or ∂tρ + ∇·J = 0 (1.30)

Note that since also electric charge is a conserved quantity, the argument holds if ρ is
substituted by the charge density ρel, and Eq. (1.30) can be read as the continuity equation
for charge instead as for mass.

1.3.2 Incompressible fluids

In many cases, especially in microfluidics, where the flow velocities are much smaller than
the sound velocity in the liquid, the fluid can be treated as being incompressible. This
means that ρ is constant in space and time, and the continuity equation (1.30) is simplified
to the following form,

∇·v = 0 or ∂ivi = 0, (1.31)

a result we shall use extensively in this course.

1.4 The Navier–Stokes equation

Newton’s second law for fluid particles is called the Navier–Stokes equation. It constitutes
the equation of motion for the Eulerian velocity field v(r, t). For an ordinary particle of
mass m influenced by external forces

∑
j Fj Newton’s second law reads

m dtv =
∑

j

Fj . (1.32)

In fluid mechanics, as discussed in Section 1.1.3, we divide by the volume of the fluid
particle and thus work with the density ρ and the force densities fj . Moreover, in fluid
mechanics we must be careful with the time-derivative of the velocity field v. As illustrated
in Fig. 1.4 the Eulerian velocity field v(r, t) is not the velocity of any particular fluid
particle, as it should be in Newton’s second law Eq. (1.32). To obtain a physically correct
equation of motion a special time-derivative, the so-called material time-derivative Dt

defined in the following subsection, is introduced for Eulerian velocity fields. Our first
version of the Navier–Stokes equation thus takes the form

ρ Dtv =
∑

j

fj . (1.33)

In the following we derive explicit expressions for the material time-derivative Dt and
various force densities fj .
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1.4.1 The material time-derivative

The material (or substantial) time-derivative is the one obtained when following the flow
of a particle, i.e., when adopting a Lagrangian description. We have already in Eq. (1.15)
found the appropriate expression, so using that on the velocity field v we arrive at

ρ Dtv(r, t) ≡ ρ dtv
(
r(t), t

)
= ρ

[
∂tv(r, t) + (v·∇)v(r, t)

]
. (1.34)

Note the use of the Lagrangian velocity field in the definition.
We can derive the same result by first noting that the total differential of the Eulerian

velocity field in general is given by dv = dt∂tv + (dr · ∇)v. Second, if we insist on
calculating the change due to the flow of a particular fluid particle we must have dr = vdt.
Combining these two expression leads to Eq. (1.34). The same analysis applies for any
flow variable, and we can conclude that the material time-derivative Dt is given by

Dt = ∂t + (v·∇). (1.35)

The Navier–Stokes equation now takes the form

ρ
(
∂tv + (v·∇)v

)
=

∑

j

fj , (1.36)

and we proceed by finding the expressions for the force densities fj .

1.4.2 Body forces

The body forces are external forces that act throughout the entire body of the fluid. In
this course we shall in particular work with the gravitational force (in terms of the density
ρ and the acceleration of gravity g) and the electrical force (in terms of the charge density
ρel of the fluid and the external electric field E). The resulting force density from these
two body forces is

fgrav + fel = ρg + ρelE. (1.37)

1.4.3 The pressure-gradient force

Consider a region Ω in a fluid with a surface ∂Ω with a surface normal vector n. The
total external force Fpres acting on this region due to the pressure p is given by the surface
integral of −np,

Fpres =
∫

∂Ω
da (−np) =

∫

∂Ω
da n(−p) =

∫

Ω
dr (−∇p). (1.38)

The minus sign is necessary since np is the outward force per area from the region acting
on the surroundings, and not the other way around. In the last step of Eq. (1.38) the
surface integral is converted to a volume integral using Gauss’s theorem.2 The integrand
of the volume integral can thus be identified as the force density due to the pressure:

fpres = −∇p. (1.39)
2The ith component of Eq. (1.38) is found by Gauss’s theorem using the vector field −pei:

ei ·
∫

∂Ω
da n(−p) =

∫
∂Ω

da n·(−pei) =
∫
Ω

dr ∇·(−pei) = ei ·
∫
Ω

dr (−∇p).
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1.4.4 The viscous force and the viscous stress tensor

Consider the same region Ω of the fluid as in the previous subsection. Due to the viscous
nature of the fluid, Ω will be subject to frictional forces on its surface ∂Ω from the flow of
the surrounding liquid. The frictional force dF on a surface element da with the normal
vector n must be characterized by a tensor rank two since two vectors are needed to
determine it: the force and the surface normal need not point in the same direction. This
tensor is denoted the viscous stress tensor σ′ik, and it expresses the ith component of the
friction force per area acting on a surface element oriented with the surface normal parallel
to the kth unit vector ek. Thus

dFi = σ′iknk da. (1.40)

The internal friction is only non-zero when fluid particles move relative to each other, hence
σ′ depends only on the spatial derivatives of the velocity. For the small velocity gradients
encountered in microfluidics we can safely assume that only first order derivatives enter
the expression for σ′, thus σ′ik must depend linearly on the velocity gradients ∂ivk.

We can pinpoint the expression for σ′ik further by noticing that it must vanish when
the liquid is rotating as a whole, i.e., when the velocity field has the form v = ω×r, where
ω is an angular velocity vector. For this velocity field we have the anti-symmetric relation
∂kvi = −∂ivk, so σ′ vanishes if it only contains the symmetric combinations ∂kvi + ∂ivk

and ∂jvj of the first order derivatives. The most general tensor of rank two satisfying
these conditions is

σ′ik = η
(
∂kvi + ∂ivk −

2
3
δik∂jvj

)
+ ζ δik∂jvj . (1.41)

The coefficients η and ζ are denoted the viscosity and second viscosity, respectively. Note,
that the viscous stress tensor in Eq. (1.41) has been normalized such that the term with
the prefactor η has zero trace. To determine the values of the viscosity coefficients one
must go beyond the symmetry consideration presented here, and either measure them
experimentally or calculate them by some microscopic model of the liquid. We shall take
the phenomenological approach and simply employ the experimental values, however, in
Exercise 4.8 we study one example of a simple theoretical model leading to an estimate of
the viscosity η.

In analogy with the pressure force, the viscous force Fvisc can be written as a surface
integral, which by use of Gauss’s theorem is converted into a volume integral,

(
Fvisc

)
i
=

∫

∂Ω
da nkσ

′
ik =

∫

Ω
dr ∂kσ

′
ik. (1.42)

The integrand is simply the ith component of the viscous force density fvisc,(
fvisc

)
i
= ∂kσ

′
ik = η∂k∂kvi +

(1

3
η + ζ

)
∂i(∂kvk). (1.43)

1.4.5 The Navier–Stokes equation for compressible fluids

It is customary to combine the force densities due to pressure and viscosity since they
both are expressed as gradients. The stress tensor σik is defined as

σik ≡ −p δik + σ′ik, (1.44)
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which then allow us to write (
fpres + fvisc

)
i
= ∂kσik. (1.45)

Inserting the force density expressions Eqs. (1.37) and (1.45) into Eq. (1.36) we obtain
the full Navier–Stokes equation for compressible fluids, here written for constant viscosities
η and ζ,

ρ
(
∂tv + (v·∇)v

)
= −∇p + η∇2v +

(
1

3
η + ζ

)
∇(∇·v) + ρ g + ρelE. (1.46)

1.4.6 The Navier–Stokes equation for incompressible fluids

In case of incompressible fluids the continuity equation is valid in its simple form ∂kvk = 0.
This reduces the stress tensor Eq. (1.41) to

σ′ik = η
(
∂kvi + ∂ivk

)
. (1.47)

If furthermore the viscosity η is constant, the divergence of the stress tensor is simply

∂kσik = −∂ip + η∂k∂kvi. (1.48)

The resulting form of the Navier–Stokes equation is the one we shall use in this course,

ρ
(
∂tv + (v·∇)v

)
= −∇p + η∇2v + ρ g + ρelE, (1.49)

and we have succeeded in deriving the second fundamental equation of fluid mechanics.

1.5 Exercises

Exercise 1.1
The inter-molecular distance in air
Assume that air at room temperature and a pressure of 1000 hPa is an ideal gas. Estimate
the average inter-molecular distance. Compare the result with that of liquids.

Exercise 1.2
The Lennard-Jones potential for inter-molecular pair-interaction
An approximative but quite useful expression for inter-molecular pair-interactions is the
so-called Lennard-Jones potential,

VLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
. (1.50)

Let r0 be the distance at which the pair of molecules experience the smallest possible
interaction energy.

(a) Determine r0 in units of the collision diameter σ and calculate the corresponding
interaction energy V (r0) in units of the maximum attraction energy ε.

(b) Calculate VLJ(3σ) and use the result to discuss the applicability of the ideal gas
model to air, given that for nitrogen σN2

= 0.3667 nm and εN2
/kB = 99.8 K.
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Exercise 1.3
The size of the fundamental fluid particle
Consider a small cube of side length λ∗ in the middle of some liquid. The typical average
inter-molecular distance in the liquid is the one discussed in Section 1.1.1. Due to random
thermal fluctuations the molecules inside the cube are continuously exchanged with the
surrounding liquid, but on average there are N molecules inside the cube. For sufficiently
small fluctuations the cube can play the role as a fundamental fluid particle.

(a) Use the standard result from basic statistics that the standard deviation of the
counting number of random events (here the number N of molecules inside the cube) is
given by

√
N to estimate the side length λ, such that the relative uncertainty

√
N/N of

the number of molecules is 1%.
(b) Determine λ∗ such that the relative uncertainty of the number of molecules is

0.1%.

Exercise 1.4
The index notation
To become familiar with the index notation try to work out the following problems.

(a) Use the index notation to prove that ∂k

(
p δik

)
= (∇p)i.

(b) Use the index notation to prove that ∇·(ρv) = (∇ρ)·v + ρ∇·v.
(c) Prove that Eq. (1.20) for the rotation of a vector is correct.
(d) Use Eqs. (1.20) and (1.21) to prove that ∇×∇× v = ∇(∇·v)−∇2v.

Exercise 1.5
The mass current density J
Argue why it is correct as stated in Eq. (1.26) that J = ρv indeed is the mass current
density. What is the SI unit of J?

Exercise 1.6
A heuristic derivation of the continuity equation
The continuity equation (1.30) can be de-
rived heuristically by considering the rate
of change, ∂t(ρ∆x∆y∆z), of the mass in-
side the small cube (shown to the right)
due to the flow of mass through the walls.
Show that ∂tρ = ∂xJx if only the x compo-
nent Jx of the current density is non-zero,
and obtain the full continuity equation by
generalization.

x

y

z

(0, 0, 0)

(∆x,∆y,∆z)

J
x
(0) J

x
(∆x)

Exercise 1.7
A heuristic derivation of the force densities from pressure and viscosity
Use the figure below to give an heuristic derivation of the pressure-gradient and viscous
force density on the right-hand-side of the incompressible Navier–Stokes equation (1.49).

Hints: Consider the three pairs of opposite sides in the cubic fluid element defined
by the corners (0, 0, 0) and (∆x,∆y, ∆z). For the pressure, Fig. (a), use that the force
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∆F on an area ∆A with surface normal n is given by p ∆A (−n). For the viscosity,
Fig. (b), use that the ith force component (∆F)i on an area ∆A with a surface normal
n is given by σ′iknk ∆A = η(∂ivk +∂kvi)nk ∆A. Let ∆x, ∆y, and ∆z go to zero at the end.

(a)

x

y

z

(0, 0, 0)

(∆x,∆y,∆z)

p(0) p(∆x)

(b)

x

y

z

(0, 0, 0)

(∆x,∆y,∆z)

σ
′(0)

σ
′(∆z)

Exercise 1.8
Viscosity of water: measured temperature dependence
Plot two graphs of the viscosity η of water based on Table B.2. One graph of η versus t
and another, a so-called Arrhenius plot, of ln(η) versus 1/T , where T is the temperature
in kelvin. Discuss the temperature dependence of the viscosity of water.

1.6 Solutions

Solution 1.1
The inter-molecular distance in air
A single air molecule occupies the volume λ3 = V/N , where V is the volume of air
containing N molecules. The length scale λ thus represents the average inter-molecular
distance. Using pV = NkBT , with p = 105 Pa and T = 300 K, we find

λ =

(
V
N

) 1
3

=

(
kBT

p

) 1
3

= 3.5 nm. (1.51)

Solution 1.2
The Lennard-Jones potential for inter-molecular pair-interaction

(a) The minimum is found by solving ∂rVLJ(r) = 0, which yields r0 = 2
1
6 σ ≈ 1.12σ,

and a corresponding interaction energy of VLJ(r0) = −ε.
(b) VLJ(3σ) = −0.0055ε. For nitrogen this means that in the distance 3σN2

= 1.1 nm
the interaction energy in kelvin is VLJ(3σN2

)/kB = −0.5 K. The average inter-molecular
distance is 3.5 nm, while the average kinetic translation energy in kelvin is 3

2T = 450 K.
Thus, the interaction effects are minute and can be neglected.

Solution 1.3
The size of the fundamental fluid particle
Consider a cube of liquid with side length λ∗ in which α =

√
N/N is a given relative
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uncertainty in the number of molecules inside the cube. Each molecule occupies the
volume λ3, where λ = 0.3 nm is a typical value of the inter-molecular distance in a liquid.
Clearly (λ∗)3 = Nλ3 and N = α−2 and thus λ∗(α) = α−

2
3 λ.

(a) With α = 10−2 we find λ∗ = 6.5 nm.
(b) With α = 10−3 we find λ∗ = 30 nm.

Solution 1.4
The index notation

(a) Since δij is a constant we have ∂kδij ≡ 0 for any value of i, j and k.
We thus find ∂k

(
pδij

)
=

(
∂kp

)
δij + p

(
∂kδij

)
= ∂ip + 0 =

(∇p)i.
(b) For the divergence of the current density we get

∇·(ρv) = ∂j

(
ρvj) =

(
∂jρ

)
vj + ρ

(
∂jvj

)
=

(∇ρ
)·v + ρ∇·v

(c) Let us consider the z component of the rotation. Per definition we have
(∇×v

)
z

=
∂xvy−∂yvx. Using index notation we obtain

(∇×v
)
z

= εzjk∂jvk. the only non-zero terms
are carrying the indices (j, k) = (x, y) or (j, k) = (y, x), and since εzxy = +1 and εzyx = −1
we get the desired result:

(∇ × v
)
z

= εzjk∂jvk = ∂xvy − ∂yvx. Likewise for the x and y
component of the rotation.

(d) For the rotation of the rotation of the velocity we get(∇×∇× v
)
i
= εijk∂j

(∇× v
)
k

= εijk∂j

(
εklm∂lvm

)
= εijkεklm ∂j∂lvm = εijkεlmk ∂j∂lvm

=
(
δilδjm − δimδjl

)
∂j∂lvm = δilδjm ∂j∂lvm − δimδjl ∂j∂lvm

= ∂j∂ivj − ∂j∂jvi = ∂i

(
∂jvj

)− (
∂j∂j

)
vi = ∂i

(∇·v)−∇2vi =
[∇(∇·v)−∇2v

]
i
.

Solution 1.5
The mass current density J
Consider a fluid of mass density ρ occupying the volume ∆V = ∆x∆y∆z. Let the volume
move along the x axis with speed vx so that the entire volume has passed through the
cross section area ∆A = ∆y∆z in the time ∆t = ∆x/vx. The mass current density is thus
Jx = mass/area/time = (ρ∆V)/(∆A)/∆t = ρ∆x/∆t = ρvx, as was to be shown. The SI
unit of J is [J] = [ρv] = (kg m−3)(m s−1) = kg m−2 s−1.

Solution 1.6
A heuristic derivation of the continuity equation
The mass ∆M inside the small, fixed volume ∆V = ∆x ∆y ∆z can change in time if and
only if the density ρ changes in time:

∂t(∆M) = (∂tρ) ∆x ∆y ∆z. (1.52)

However, due to mass conservation, this change in mass can only occur if the mass current
density J = Jxex causes different amounts of mass to enter the volume at the left side and
to leave it at the right side. Therefore, the rate of change in mass can also be written as

∂t(∆M) = +Jx(0)∆y∆z − Jx(∆x)∆y∆z = −[
Jx(∆x)− Jx(0)

]
∆y∆z. (1.53)

Equating the two right-hand sides of Eqs. (1.52) and (1.53) and dividing by ∆V leads to

∂tρ = −Jx(∆x)− Jx(0)
∆x

−→
∆x→0

−∂xJx. (1.54)
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If the current density also has non-zero components along the y and the z direction, the
corresponding two terms appear on the right-hand side of Eq. (1.54) leading to

∂tρ = −Jx(∆x)− Jx(0)
∆x

− Jy(∆y)− Jy(0)
∆y

− Jz(∆z)− Jz(0)
∆z

−→
∆V→0

−∇·J. (1.55)

Solution 1.7
A heuristic derivation of the force densities from pressure and viscosity
Use the figure below to give an heuristic derivation of the pressure-gradient and viscous
force density on the right-hand-side of the incompressible Navier–Stokes equation (1.49).

Solution 1.8
Viscosity of water: measured temperature dependence
Plot two graphs of the viscosity η of water based on Table B.2. One graph of η versus t
and another, a so-called Arrhenius plot, of ln(η) versus 1/T , where T is the temperature
in kelvin. Discuss the temperature dependence of the viscosity of water.



Chapter 2

Analytical Navier–Stokes solutions

The Navier–Stokes equation is notoriously difficult to solve analytically because it is a non-
linear differential equation. Analytical solutions can however be found in a few, but very
important cases. Some of these solutions are the topic for this chapter. In particular, we
shall solve a number of steady-state problems, among them Poiseuille flow problems, i.e.,
pressure induced steady-state fluid flow in infinitely long, translation-invariant channels. It
is important to study such idealized flows, since they provide us with basic understanding
of the behavior of liquids flowing in the microchannels of lab-on-a-chip systems.

Before analyzing the Poiseuille problem we treat three even simpler flow problems:
fluids in mechanical equilibrium, the gravity-driven motion of a thin liquid film on an
inclined plane, and the motion of a fluid between two parallel plates driven by the relative
motion of theses plates (Couette flow).

In all cases we shall employ the so-called no-slip boundary condition for the velocity
field at the part ∂Ω of the boundary that is a solid wall,

v(r) = 0, for r ∈ ∂Ω (no-slip). (2.1)

The microscopic origin of this condition is the assumption of complete momentum relax-
ation between the molecules of the wall, which are at rest, and the outermost molecules
of the fluid that collide with the wall. The momentum is relaxed on a length scale of
the order the molecular mean free path in the fluid, which for liquids and high density
fluids means one inter-molecular distance (' 0.3 nm). Only for rarified gases or narrow
channels, where the mean free path of the gas molecules is comparable with the channel
dimensions, is it necessary to abandon the no-slip boundary condition.

2.1 Fluids in mechanical equilibrium

A fluid in mechanical equilibrium must be at rest relative to the walls of the vessel con-
taining it, because otherwise it would continuously loose kinetic energy by heat conversion
due to internal friction originating from viscous forces inside the fluid. The velocity field
is therefore trivially zero everywhere, a special case of steady-state defined by ∂tv ≡ 0.

19
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(a) (b)

Figure 2.1: (a) A water column (the syringe to the left) used in a lab-on-a-chip system
(the polymer chip in the center) to establish the pressure needed for sending water through
the silicone tube into the microchannels of the chip. (b) Adjusting the water level in the
syringe to level with the chip. Courtesy the groups of Kristensen and Bruus at MIC.

If we let gravity, described by the gravitational acceleration g = −gez in the negative z
direction, be the only external force, the Navier–Stokes equation reduces to

v(r) = 0, (2.2a)
0 = −∇p− ρgez. (2.2b)

For an incompressible fluid, say water, Eq. (2.2b) is easily integrated to give

p = p0 − ρgz, (2.3)

where p0 is the pressure at the arbitrarily defined zero-level z = 0. This relation points
to an easy way of generating pressure differences in liquids: the pressure at the bottom
of a liquid column of height H is ρgH higher than the pressure at height H. Liquids
with different densities, such as mercury with ρHg = 1.36 × 104 kg m−3 and water with
ρH2O = 1.00×103 kgm−3 can be used to generate different pressures for given heights. The
use of this technique in lab-on-a-chip systems is illustrated in Fig. 2.1 and in Exercise 2.1.

Consider a compressible fluid, say, an ideal gas under isothermal conditions for which

ρ =
ρ0

p0

p, (2.4)

where ρ0 and p0 is the density and pressure, respectively, for one particular state of the
gas. With this equation of state Eqs. (2.2a) and (2.2b) are changed into

v(r) = 0, (2.5a)

0 = −∇p− ρ0

p0

pgez. (2.5b)

Integration of Eq. (2.5b) yields

p(z) = p0 exp
(
− 1

p0

ρ0gz
)
. (2.6)



2.2. LIQUID FILM FLOW ON AN INCLINED PLANE 21

z
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v
x
(z)

g

h

α

Figure 2.2: A liquid film (light gray) of uniform thickness h flowing down along an inclined
plane (dark gray). The plane has the inclination angle α and is assumed to be infinitely
long and infinitely wide. The x and z axis is chosen parallel and normal to the plane,
respectively. The gravitational acceleration is thus given by g = g sinα ex− g cosα ez. In
steady-state the resulting velocity profile of the liquid film is parabolic as shown.

Inserting the parameter values for air at the surface of the Earth (hardly a microfluidic
system), the thickness of the atmosphere is readily estimated to be of the order 10 km;
see Exercise 2.2.

2.2 Liquid film flow on an inclined plane

The first example of a non-trivial velocity field is that of a liquid film flowing down along
an infinitely long and infinitely wide inclined plane. Consider the geometry defined in
Fig. 2.2. The component gz of the gravitational acceleration normal to the inclined plane
is balanced by the normal forces. The component gx parallel to the plane accelerates
the film down along the inclined plane until the velocity of the film is so large that the
associated viscous friction forces in the film compensates gx. When this happens the
motion of the film has reached steady-state, a situation we analyze in the following.

The translation invariance of the setup along the x and y direction dictates that the
velocity field can only depend on z. Moreover, since the driving force points along the x
direction only the x component of the velocity field is non-zero. Finally, no pressure gra-
dients play any role in this free-flow problem, so the steady-state Navier–Stokes equation
(i.e., ∂tv = 0) becomes

v(r) = vx(z) ex, (2.7a)

ρ(v·∇)v = η ∂ 2
z v + ρg sinα ex. (2.7b)

The special symmetry Eq. (2.7a) of the velocity field implies an enormous simplification of
the flow problem. Straightforward differentiation shows namely that the non-linear term
in the Navier–Stokes equation (2.7b) vanishes,

(v·∇)v = vx(z)∂x

[
vx(z)

]
= 0. (2.8)

We thus only need to solve a linear second-order ordinary differential equation. This
demands two boundary conditions, which are given by demanding no-slip of v at the
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0

Figure 2.3: An example of Couette flow. A fluid is occupying the space of height h between
two horizontally placed, parallel, infinite planar plates. The top plate is moved with the
constant speed v0 relative to the bottom plate. The no-slip boundary condition at both
plates forces the liquid into motion, resulting in the linear velocity profile shown.

plane z = 0 and no viscous stress on the free surface, i.e., σ′xz from Eq. (1.47) is zero at
z = h. We arrive at

η ∂ 2
z vx(z) = −ρg sinα, (2.9a)

vx(0) = 0, (no-slip) (2.9b)
η ∂zvx(h) = 0, (no stress). (2.9c)

The solution is seen to be the well-known half-parabola

vx(z) = sinα
ρg

2η
(2h− z)z = sin α

ρgh2

2η

(
1− z

h

) z

h
. (2.10)

As studied in Exercise 2.3 a typical speed for a 100 µm thick film of water is 1 cm/s.

2.3 Couette flow

Couette flow is a flow generated in a liquid by moving one or more of the walls of the
vessel containing the fluid relative to the other walls. An important and very useful
example is the Couette flow set up in a fluid held in the space between two concentric
cylinders rotating axisymmetrically relative to each other. This setup is used extensively
in rheology1 because it is possible to determine the viscosity η of the fluid very accurately
by measuring the torque necessary to sustain a given constant speed of relative rotation.

Here we study the simpler case of planar Couette flow as illustrated in Fig. 2.3. A
liquid is placed between two infinite planar plates. The plates are oriented horizontally in
the xy plane perpendicular to the gravitational acceleration g . The bottom plate at z = 0
is kept fixed in the laboratory, while the top plate at z = h is moved in the x direction
with the constant speed v0.

As in the previous example there is translation invariance of the setup along the x
and y direction implies that the velocity field can only depend on z. Moreover, since the
driving force points along the x direction, only the x component of the velocity field is

1Rheology is the study of deformation and flow of matter
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non-zero. Finally, neither body forces nor pressure forces play a role since both gravity
and the only non-zero pressure gradient (the z component due to hydrostatic pressure) are
compensated by the reaction forces of the bottom plate. As in the previous example the
symmetry again implies (v ·∇)v = 0, and the steady-state Navier–Stokes equation then
reads

v(r) = vx(z) ex, (2.11a)

η ∂ 2
z v = 0. (2.11b)

The boundary conditions on v is no-slip at the top and bottom plane plane z = 0 and
z = h, respectively, so we arrive at the following second-order ordinary differential equation
with two boundary conditions:

η ∂ 2
z vx(z) = 0, (2.12a)

vx(0) = 0, (no-slip) (2.12b)
vx(h) = v0, (no-slip). (2.12c)

The solution is seen to be the well-known linear profile

vx(z) = v0

z

h
. (2.13)

Assuming this expression to be valid for large, but finite, plates with area A we can, by use
of the viscous stress tensor σ′, determine the horizontal external force F = Fxex necessary
to apply to the top plate to pull it along with fixed speed v0,

Fx = σ′xz A = η
v0A
h

. (2.14)

This expression allows for a simple experimental determination of the viscosity η.

2.4 Poiseuille flow

We now turn to the final class of analytical solutions to the Navier–Stokes equation: the
pressure-driven, steady-state flows in channels, also known as Poiseuille flows or Hagen–
Poiseuille flows. This class is of major importance for the basic understanding of liquid
handling in lab-on-a-chip systems

In a Poiseuille flow the fluid is driven through a long, straight, and rigid channel by
imposing a pressure difference between the two ends of the channel. Originally, Hagen
and Poiseuille studied channels with circular cross-sections, as such channels are straight-
forward to produce. However, especially in microfluidics, one frequently encounters other
shapes. One example, shown in Fig. 2.4, is the Gaussian-like profile that results from pro-
ducing microchannels by laser ablation in the surface of a piece of the polymer PMMA.
The heat from the laser beam cracks the PMMA into MMA, which by evaporation leaves
the substrate. A whole network of microchannels can then be created by sweeping the
laser beam across the substrate in a well-defined pattern. The channels are sealed by
placing and bonding a polymer lid on top of the structure.
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(a) (b) (c)

Figure 2.4: Fabrication of microchannels by laser ablation in the surface a substrate made
of the polymer PMMA. (a) Schematic diagram of the laser beam, the laser ablated groove,
including the molten PMMA and the vaporized hemispherical cloud of MMA leaving the
cut-zone. (b) Scanning electron microscope (SEM) micrograph of the cross-section of
an actual microchannel showing the resulting Gaussian-like profile. (c) A three-layered
PMMA-microfluidic system for the detection of ammonia in aqueous samples sent through
the meandering microchannel fabricated by laser ablation. Courtesy the group of Geschke
at MIC.

2.4.1 Arbitrary cross-sectional shape

We first study the steady-state Poiseuille flow problem with an arbitrary cross-sectional
shape as illustrated in Fig. 2.5. Although not analytically solvable, this example never-
theless provide us with the structural form of the solution for the velocity field.

The channel is parallel to the x axis, and it is assumed to be translation invariant in
that direction. The constant cross-section in the yz plane is denoted C with boundary ∂C,
respectively. A constant pressure difference ∆p is maintained over a segment of length L
of the channel, i.e., p(0) = p0 + ∆p and p(L) = p0. The gravitational force is balanced
by a hydrostatic pressure gradient in the vertical direction. These two forces are therefore
left out of the treatment. The translation invariance of the channel in the x direction
combined with the vanishing of forces in the yz plane implies the existence of a velocity
field independent of x, while only its x component can be non-zero, v(r) = vx(y, z) ex.2

Consequently (v·∇)v = 0 and the steady-state Navier–Stokes equation becomes

v(r) = vx(y, z) ex, (2.15a)

0 = η∇2
[
vx(y, z) ex

]−∇p. (2.15b)

Since the y and z components of the velocity field are zero, it follows that ∂yp = 0 and
∂zp = 0, and consequently that the pressure field only depends on x, p(r) = p(x). Using
this result the x component of the Navier–Stokes equation (2.15b) becomes

η
[
∂ 2

y + ∂ 2
z

]
vx(y, z) = ∂xp(x). (2.16)

2Although a valid mathematical solution at any flow speed, the translation invariant velocity field is
only stable at low velocities. The translation invariance symmetry is spontaneously broken as the flow
speed is increased, and eventually an unsteady turbulent flow appears as the physical solution having the
smallest possible entropy production rate.
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Figure 2.5: The Poiseuille flow problem in a channel, which is translation invariant in
the x direction, and which has an arbitrarily shaped cross-section C in the yz plane. The
boundary of C is denoted ∂C. The pressure at the left end, x = 0, is an amount ∆p higher
than at the right end, x = L.

Here it is seen that the left-hand side is a function of y and z while the right-hand side is
a function of x. The only possible solution is thus that the two sides of the Navier–Stokes
equation equal the same constant. However, a constant pressure gradient ∂xp(x) implies
that the pressure must be a linear function of x, and using the boundary conditions for
the pressure we obtain

p(r) =
∆p

L
(L− x) + p0. (2.17)

With this we finally arrive at the second-order partial differential equation that vx(y, z)
must fulfil in the domain C given the usual no-slip boundary conditions at the solid walls
of the channel described by ∂C,

[
∂ 2

y + ∂ 2
z

]
vx(y, z) = − ∆p

ηL
, for (y, z) ∈ C (2.18a)

vx(y, z) = 0, for (y, z) ∈ ∂C. (2.18b)

Once the velocity field is determined it is possible to calculate the so-called flow rate
Q, which is defined as the fluid volume discharged by the channel per unit time. For
compressible fluids it becomes important to distinguish between the flow rate Q and the
mass flow rate Qmass defined as the discharged mass per unit time. In the case of the
geometry of Fig. 2.5 we have

Q ≡
∫

C
dy dz vx(y, z), (2.19a)

Qmass ≡
∫

C
dy dz ρ vx(y, z). (2.19b)

This is how far we can get theoretically without specifying the actual shape of the channel.

2.4.2 Elliptic cross-section

Our first explicit example is the elliptic cross-section. We let the center of the ellipse be
at (y, z) = (0, 0). The major axis of length a and the minor axis of length b are parallel
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to the y axis and z axis, respectively, as shown in Fig. 2.6(a). The boundary ∂C of the
ellipse is given by the expression

∂C : 1− y2

a2
− z2

b2
= 0. (2.20)

If we therefore as a trial solution choose

vx(y, z) = v0

(
1− y2

a2
− z2

b2

)
, (2.21)

we are guarantied that vx(y, z) satisfies the no-slip boundary condition Eq. (2.18b). In-
sertion of the trial solution into the left-hand side of the Navier–Stokes equation (2.18a)
yields

[
∂ 2

y + ∂ 2
z

]
vx(y, z) = −2v0

(
1
a2

+
1
b2

)
. (2.22)

Thus the Navier–Stokes equation (2.18a) will be satisfied by choosing the constant v0 as

v0 =
∆p

2ηL

a2b2

a2 + b2
. (2.23)

To calculate the flow rate Q for the elliptic channel we need to evaluate a 2d integral
in an elliptically shaped integration region. This we handle by the following coordinate
transformation. Let (ρ, φ) be the polar coordinates of the unit disk, i.e., the radial and
azimuthal coordinates obey 0 ≤ ρ ≤ 1 and 0 ≤ φ ≤ 2π, respectively. Our physical
coordinates (y, z) and the velocity field vx can then be expressed as functions of (ρ, φ):

y(ρ, φ) = aρ cosφ, (2.24)
z(ρ, φ) = bρ sinφ, (2.25)

vx(ρ, φ) = v0

(
1− ρ2

)
. (2.26)

The advantage is that now the boundary ∂C can be expressed in terms of just one coor-
dinate instead of two,

∂C : ρ = 1. (2.27)

The (y, z) surface integral in Eq. (2.19a) is transformed into (ρ, φ) coordinates by use of
the Jacobian determinant |∂(ρ,φ)(y, z)|,

∫

C
dy dz =

∫

C
dρ dφ

∣∣∣∣
∂(y, z)
∂(ρ, φ)

∣∣∣∣ =
∫

C
dρ dφ

∣∣∣∣
∂ρy ∂ρz

∂φy ∂φz

∣∣∣∣

=
∫ 1

0
dρ

∫ 2π

0
dφ

∣∣∣∣
+a cosφ +b sinφ
−aρ sinφ +bρ cosφ

∣∣∣∣ = ab

∫ 2π

0
dφ

∫ 1

0
dρ ρ. (2.28)

The flow rate Q for the elliptic channel is now easily calculated as

Q =
∫

C
dy dz vx(y, z) = ab

∫ 2π

0
dφ

∫ 1

0
dρ ρ vx(ρ, φ) =

π

4
1

ηL

a3b3

a2 + b2
∆p. (2.29)
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Figure 2.6: The definition of three specific cross-sectional shapes for the Poiseuille flow
problem. (a) The ellipse with major axis a and minor axis b, (b) the circle with radius a,
and (c) the equilateral triangle with side length a.

2.4.3 Circular cross-section

Since the circle Fig. 2.6(b) is just the special case a = b of the ellipse, we can immediately
write down the result for the velocity field and flow rate for the Poiseuille flow problem in
a circular channel. From Eqs. (2.21), (2.23), and (2.29) using a = b it follows that

vx(y, z) =
∆p

4ηL

(
a2 − y2 − z2

)
, (2.30a)

Q =
πa4

8ηL
∆p. (2.30b)

However, the same result can also be obtained by direct calculation using cylindrical coor-
dinates (x, r, φ) thereby avoiding the trial solution Eq. (2.21). For cylindrical coordinates,
see Appendix A.2, with the x axis chosen as the cylinder axis we have

(x, y, z) = (x, r cosφ, r sinφ), (2.31a)
ex = ex, (2.31b)
er = + cosφ ey + sin φ ez, (2.31c)

eφ = − sinφ ey + cosφ ez, (2.31d)

∇2 = ∂ 2
x + ∂ 2

r +
1
r
∂r +

1
r2

∂ 2
φ . (2.31e)

The symmetry considerations reduces the velocity field to v = vx(r)ex, so that the Navier–
Stokes equation (2.18a) becomes an ordinary differential equation of second order,

[
∂ 2

r +
1
r

∂r

]
vx(r) = −∆p

ηL
. (2.32)

The solutions to this inhomogeneous equation is the sum of a general solution to the
homogeneous equation, v′′x + v′x/r = 0, and one particular solution to the inhomogeneous
equation. It is easy to see that the general homogeneous solution has the linear form
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vx(r) = A + B ln r, while a particular inhomogeneous solution is vx(r) = −(∆p/4ηL) r2.
Given the boundary conditions vx(a) = 0 and v′x(0) = 0 we arrive at

vx(r, φ) =
∆p

4ηL

(
a2 − r2

)
(2.33a)

Q =
∫ 2π

0
dφ

∫ a

0
dr r

∆p

4ηL

(
a2 − r2) =

π

8
a4

ηL
∆p. (2.33b)

2.4.4 Equilateral triangular cross-section

There exists no analytical solution to the Poiseuille flow problem with a general triangular
cross-section. In fact, it is only for the equilateral triangle defined in Fig. 2.6(c) that an
analytical result is known.

The domain C in the yz plane of the equilateral triangular channel cross-section can
be thought of as the union of the three half-planes (

√
3/2)a ≥ z, z ≥ √

3y, and z ≥ −√3y.
Inspired by our success with the trial solution of the elliptic channel, we now form a trial
solution by multiplying together the expression for the three straight lines defining the
boundaries of the equilateral triangle,

vx(y, z) =
v0

a3

(√3
2

a− z
)(

z −
√

3y
)(

z +
√

3y
)

=
v0

a3

(√3
2

a− z
)(

z2 − 3y2
)
. (2.34)

By construction this trial solution satisfies the no-slip boundary condition on ∂C. Luckily,
it turns out that the Laplacian acting on the trial solution yields a constant,

[
∂ 2

y + ∂ 2
z

]
vx(y, z) = −2

√
3

v0

a2
. (2.35)

Thus the Navier–Stokes equation will be satisfied by choosing the constant v0 as

v0 =
1

2
√

3
∆p

ηL
a2. (2.36)

The flow rate Q is most easily found by first integrating over y and then over z,

Q = 2
∫ √

3
2

a

0
dz

∫ 1√
3

z

0
dy vx(y, z) =

4v0

3
√

3 a3

∫ √
3

2
a

0
dz

(√
3

2
a− z

)
z3

=
3

160
v0 a2 =

√
3

320
a4

ηL
∆p. (2.37)

2.4.5 Rectangular cross-section

For lab-on-a-chip systems many fabrication methods leads to microchannels having a rect-
angular cross-section. One example is the microreactor shown in panel (a) and (b) of
Fig. 2.7. This device is made in the polymer SU-8 by hot embossing, i.e., the SU-8 is
heated up slightly above its glass transition temperature, where it gets soft, and then a
hard stamp containing the negative of the desired pattern is pressed into the polymer. The
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Figure 2.7: (a) A top-view picture of a micro-reactor with nine inlet microchannels made
by hot embossing in the polymer SU-8 before bonding on a polymer lid. (b) A zoom-in
on one of the inlet channels having a near perfect rectangular shape of height h = 50 µm
and width w = 100 µm . Courtesy the group of Geschke at MIC. (c) The definition of the
rectangular channel cross-section of height h and width w, which is analyzed in the text.

stamp is removed and later a polymer lid is placed on top of the structure and bonded to
make a leakage-free channel.

It is perhaps a surprising fact that no analytical solution is known to the Poiseuille flow
problem with a rectangular cross-section. In spite of the high symmetry of the boundary
the best we can do analytically is to find a Fourier sum representing the solution.

In the following we always take the width to be larger than the height, w > h. By
rotation this situation can always be realized. The Navier–Stokes equation and associated
boundary conditions are

[
∂ 2

y + ∂ 2
z

]
vx(y, z) = − ∆p

ηL
, for − 1

2
w < y <

1
2
w, 0 < z < h, (2.38a)

vx(y, z) = 0, for y = ±1
2
w, z = 0, z = h. (2.38b)

We begin by expanding all functions in the problem as Fourier series along the short vertical
z direction. To ensure the fulfilment of the boundary condition vx(y, 0) = vx(y, h) = 0
we use only terms proportional to sin(nπz/h), where n is a positive integer. A Fourier
expansion of the constant on the right-hand side in Eq. (2.38a) yields,

− ∆p

ηL
= − ∆p

ηL

4
π

∞∑

n,odd

1
n

sin
(
nπ

z

h

)
, (2.39)

a series containing only odd integers n. The coefficients fn(y) of the Fourier expansion in
the z coordinate of the velocity are constants in z, but functions in y:

vx(y, z) ≡
∞∑

n=1

fn(y) sin
(
nπ

z

h

)
. (2.40)

Inserting this series in the left-hand side of Eq. (2.38a) leads to

[
∂ 2

y + ∂ 2
z

]
vx(y, z) =

∞∑

n=1

[
f ′′n(y)− n2π2

h2
fn(y)

]
sin

(
nπ

z

h

)
. (2.41)
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Figure 2.8: (a) Contour lines for the velocity field vx(y, z) for the Poiseuille flow problem
in a rectangular channel. The contour lines are shown in steps of 10% of the maximal
value vx(0, h/2). (b) A plot of vx(y, h/2) along the long center-line parallel to ey. (c) A
plot of vx(0, z) along the short center-line parallel to ez.

A solution to the problem must satisfy that for all values of n the nth coefficient in the
pressure term Eq. (2.39) must equal the nth coefficient in the velocity term Eq. (2.41).
The functions fn(y) are therefore given by

fn(y) = 0, for n even, (2.42a)

f ′′n(y)− n2π2

h2
fn(y) = − ∆p

ηL

4
π

1
n

, for n odd. (2.42b)

To determine fn(y), for n being odd, we need to solve the inhomogeneous second order
differential equation (2.42b). A general solution can be written as

fn(y) = f inhom
n (y) + fhomog

n (y), (2.43)

where f inhom
n (y) is a particular solution to the inhomogeneous equation and fhomog

n (y) a
general solution to the homogeneous equation (where the right-hand side is put equal to
zero). It is easy to find one particular solution to Eq. (2.42b). One can simply insert the
trial function f inhom

n (y) = const and solve the resulting algebraic equation,

f inhom
n (y) =

4h2∆p

π3ηL

1
n3

, for n odd. (2.44)

The general solution to the homogeneous equation, f ′′n(y) − (n2π2/h2) fn(y) = 0 is the
linear combination

fhomog
n (y) = A cosh

(nπ

h
y
)

+ B sinh
(nπ

h
y
)
. (2.45)

The solution fn(y) that satisfies the no-slip boundary conditions fn

(± 1
2w

)
= 0 is

fn(y) =
4h2∆p

π3ηL

1
n3

[
1− cosh

(
nπ y

h

)

cosh
(
nπ w

2h

)
]
, for n odd, (2.46)



2.4. POISEUILLE FLOW 31

which leads to the velocity field for the Poiseuille flow in a rectangular channel,

vx(y, z) =
4h2∆p

π3ηL

∞∑

n,odd

1
n3

[
1− cosh

(
nπ y

h

)

cosh
(
nπ w

2h

)
]

sin
(
nπ

z

h

)
. (2.47)

In Fig. 2.8 are shown some plots of the contours of the velocity field and of the velocity
field along the symmetry axes.

The flow rate Q is found by integration as follows,

Q = 2
∫ 1

2
w

0
dy

∫ h

0
dz vx(y, z) (2.48a)

=
4h2∆p

π3ηL

∞∑

n,odd

1
n3

2h

nπ

[
w − 2h

nπ
tanh

(
nπ

w

2h

)]
(2.48b)

=
8h3w∆p

π4ηL

∞∑

n,odd

[
1
n4
− 2h

πw

1
n5

tanh
(
nπ

w

2h

)]
(2.48c)

=
h3w∆p

12ηL

[
1−

∞∑

n,odd

1
n5

192
π5

h

w
tanh

(
nπ

w

2h

)]
, (2.48d)

where we have used
∞∑

n,odd

1
n4

=
π4

96
.

Very useful approximate results can be obtained in the limit h
w → 0 of a flat and very

wide channel, for which h
w tanh

(
nπ w

2h

) → h
w tanh(∞) = h

w , and Q becomes

Q ≈ h3w∆p

12ηL

[
1− 192

π5

h

w

∞∑

n,odd

1
n5

]

=
h3w∆p

12ηL

[
1− 192

π5

31
32

ζ(5)
h

w

]

≈ h3w∆p

12ηL

[
1− 0.630

h

w

]
. (2.49)

Here we have on the way used the Riemann zeta function, ζ(x) ≡ ∑∞
n=1 1/nx,

∞∑

n,odd

1
n5

=
∞∑

n=1

1
n5
−

∞∑
n,even

1
n5

= ζ(5)−
∞∑

k=1

1
(2k)5

= ζ(5)− 1
32

ζ(5) =
31
32

ζ(5). (2.50)

The approximative result Eq. (2.49) for Q is surprisingly good. For the worst case, the
square with h = w, the error is just 13%, while already at aspect ratio a half, h = w/2,
the error is down to 0.2%.

If we neglect the side walls completely we arrive at the case of an infinitely wide
channel, which is studied in the following subsection.
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Figure 2.9: A sketch in the xz plane of an infinite, parallel-plate channel of height h. The
system is translation invariant in the y direction and fluid is flowing in the x direction due
to a pressure drop ∆p over the section of length L.

2.4.6 Infinite parallel-plate channel

In microfluidics the aspect ratio of a rectangular channel can often be so large that the
channel is well approximated by an infinite parallel-plate configuration. The geometry
shown in Fig. 2.9 is much like the one shown for the Couette flow in Fig. 2.3, but now the
both plates are kept fixed and a pressure difference ∆p is applied. Due to the symmetry
the y coordinate drops out and we end with the following ordinary differential equation,

∂ 2
z vx(z) = −∆p

ηL
, (2.51a)

vx(0) = 0, (no-slip) (2.51b)
vx(h) = 0, (no-slip). (2.51c)

The solution is a simple parabola

vx(z) =
∆p

2ηL
(h− z)z, (2.52)

and the flow rate Q through a section of width w is found as

Q =
∫ w

0
dy

∫ h

0
dz

∆p

2ηL
(h− z)z =

h3w

12ηL
∆p. (2.53)

This approximate expression for the flow rate in flat rectangular channels can be used
instead of the more accurate expression Eq. (2.49) to obtain good order-of-magnitude
estimates. However, note that the error is 23% for aspect ratio one third, h = w/3, and
by 7% for aspect ratio one tenth, h = w/10.

2.5 Shape perturbation in Poiseuille flow problems

By use of shape perturbation theory it is possible to extend the analytical results for
Poiseuille flow beyond the few cases of regular geometries that we have treated above. In
shape perturbation theory the starting point is an analytically solvable case, which then is
deformed slightly characterized by some small perturbation parameter ε. As illustrated in
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(a)

η = ρ cos θ

ζ = ρ sin θ

(b)

φ = θ

r = aρ
[

1 + ε sin(kθ)
]

y = aρ
[

1 + ε sin(kθ)
]

cos θ

z = aρ
[

1 + ε sin(kθ)
]

sin θ

Figure 2.10: (a) The geometry of the unperturbed and analytically solvable cross-section,
the unit circle, described by coordinates (η, ζ) or (ρ, θ). (b) The geometry of the perturbed
cross-section described by coordinates (y, z) or (r, φ) and the perturbation parameter ε.
Here a = 1, k = 5 and ε = 0.2.

Fig. 2.10 the unperturbed shape is described by parametric coordinates (η, ζ) in Cartesian
form or (ρ, θ) in polar form. The coordinates of the physical problem we would like to
solve are (y, z) in Cartesian form and (r, φ) in polar form.

As a concrete example we take the multipolar deformation of the circle defined by the
transformation

φ = θ, 0 ≤ θ ≤ 2π, (2.54a)
r = a ρ

[
1 + ε sin(kθ)

]
, 0 ≤ ρ ≤ 1, (2.54b)

y(ρ, θ) = a ρ
[
1 + ε sin(kθ)

]
cos θ, (2.54c)

z(ρ, θ) = a ρ
[
1 + ε sin(kθ)

]
sin θ, (2.54d)

where a is length scale and k is an integer defining the order of the multipolar deformation.
Note that for ε = 0 the shape is unperturbed. The boundary of the perturbed shape is
simply described by fixing the unperturbed coordinate ρ = 1 and sweeping in θ

∂C :
(
y, z

)
=

(
y(1, θ), z(1, θ)

)
. (2.55)

It is therefore desirable to formulate the perturbed Poiseuille problem using the unper-
turbed coordinates. To obtain analytical results it is important to make the appearance of
the perturbation parameter explicit. When performing a perturbation calculation to order
m all terms containing εl with l > m are discarded, while the remaining terms containing
the same power of ε are grouped together, and the equations are solved power by power.

To carry out the perturbation calculation the velocity field vx(y, z) is written as

vx(y, z) = vx

(
y(ρ, θ), z(ρ, θ)

)
= v(0)

x (ρ, θ) + ε v(1)
x (ρ, θ) + ε2 v(2)

x (ρ, θ) + · · · (2.56)

Likewise, the Laplacian operator in the Navier–Stokes equation must be expressed in
terms of ρ, θ, and ε. The starting point of this transformation is the transformation of
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the gradients

∂r = (∂rρ) ∂ρ + (∂rθ) ∂θ, (2.57a)

∂φ = (∂φρ) ∂ρ + (∂φθ) ∂θ. (2.57b)

The derivatives (∂rρ), (∂rθ), (∂φρ), and (∂φθ) is obtained from the inverse transformation
of Eqs. (2.54b) and (2.54a),

ρ(r, φ) =
1

1 + ε sin(kφ)
r

a
, (2.58a)

θ(r, φ) = φ. (2.58b)

The expansion Eq. (2.56) can now be inserted into the Navier–Stokes equation and by
use of the derivatives Eqs. (2.57a) and (2.57b) we can carry out the perturbation scheme.
The calculation is straightforward but tedious. We shall here just quote the first order
perturbation result for the velocity field:

vx(ρ, θ) =
[(

1− ρ2
)− 2

(
ρ2 − ρk

)
sin(kθ) ε

] a2∆p

4ηL
+O(

ε2
)
. (2.59)

This example may appear rather artificial. However, almost any shape deformation of the
circle can by analyzed based on this example. An arbitrarily shaped boundary can be
written as a Fourier series involving a sum over infinitely many multipole deformations
like the kth one studied in this section.

2.6 Stokes drag on a sphere moving in steady-state

As the last example we study the steady-state motion of a rigid sphere in a fluid. This
is relevant for many applications of lab-on-a-chip systems where small objects, such as
magnetic beads, fluorescent markers, or biological cells, are moved around inside the mi-
crofluidic channels. We shall restrict our treatment to rigid spherical bodies.

We choose a coordinate system where the sphere with radius a is at rest and the
surrounding fluid moves past it. The goal is to calculate the velocity and pressure fields,
and from that find the stress tensor at the sphere, which finally will give us the force
acting on the sphere. At infinity the fluid is assumed to move with a constant velocity
v = V0ez along the z axis, while at the surface of the sphere we have the no-slip boundary
condition, v(r = a) = 0.

Due to the symmetry we choose to work with spherical coordinates (r, θ, φ), and we
notice that only the radial coordinate r as well as the polar angle θ (the angle to the z
axis) enters. The azimuthal angle φ is therefore suppressed in the following.

To simplify the problem we consider the low Reynolds number limit, Re = ηaV0/ρ ¿ 1,
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Figure 2.11: The Stokes drag force Fdrag on a rigid sphere of radius a, when the sphere
is at rest, u = 0, and the fluid of viscosity η has the constant velocity V0 at infinity as
indicated by the four vectors V0.

and the linear steady-state Navier–Stokes equation and the continuity equation become

∂ 2
r vr +

2
r

∂rvr −
2
r2

vr +
1
r2

∂ 2
θ vr +

cot θ

r2
∂θvr −

2
r2 sin θ

∂θvθ −
2 cot θ

r2 sin θ
vθ =

1
η

∂rp, (2.60a)

∂ 2
r vθ +

2
r

∂rvθ −
1

r2 sin2 θ
vθ +

1
r2

∂ 2
θ vθ +

cot θ

r2
∂θvθ +

2
r2

vr =
1
η

1
r
∂θp, (2.60b)

∂rvr +
2
r

vr +
1
r

∂θvθ +
cot θ

r
vθ = 0. (2.60c)

Fortunately, the solutions for the three fields vr, vθ, and p are not very complicated. By
inspection one can verify that the solutions are

vr = +V0 cos θ

[
1− 3a

2r
+

a3

2r3

]
, (2.61a)

vθ = −V0 sin θ

[
1− 3a

4r
− a3

4r3

]
, (2.61b)

p = p0 −
3
2

ηV0

a
cos θ

a2

r2
. (2.61c)

The total frictional force acting on the sphere is the integral of the surface forces,

Fdrag =
∫

∂Ω
da

(
− p cos θ + σ′rr cos θ − σ′rθ sin θ

)
. (2.62)

The stress tensor components in spherical coordinates are

σ′rr = 2η ∂rvr, σ′rθ = η
(1

r
∂θvr + ∂rvθ −

1
r

vθ

)
. (2.63)

Using our explicit results for the velocity and pressure fields we find at the surface r = a
of the sphere that

σ′rr = 0, σ′rθ = −3ηV0

2a
sin θ, p = p0 −

3ηV0

2a
cos θ. (2.64)

Inserting this into Eq. (2.62) yields the famous formula for the Stokes drag

Fdrag = 6πη aV0. (2.65)
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Consider a particle moving with the velocity u at a position where the velocity of the fluid
would have been v had the particle not been present. In this case, given that no walls or
other obstacles are near by, the expression Eq. (2.65) can be generalized to

Fdrag = 6πη a (v − u). (2.66)

2.7 Exercises

Exercise 2.1
Generation of hydrostatic pressure in microchannels
We study some aspect of the difference in hydrostatic pressure between points at different
depths in some incompressible liquid.

(a) Check that Eq. (2.3) is a solution to the static Navier–Stokes equation (2.2b).
(b) Consider the figure shown below illustrating a microchannel filled with water.

Calculate the pressure generated by the water column of height H = 10 cm at the points
A, B, and C inside the circular microchannel of radius a = 100 µm.

(c) Calculate the heights of mercury- and water-columns generating a pressure differ-
ence of 1 atm = 1.013× 105 Pa.

x

z

H

a

0

−a

g

A
B

C

Exercise 2.2
The thickness of the atmosphere of the Earth
Prove the validity of Eqs. (2.4) and (2.6) for an ideal gas under isothermal conditions, and
estimate the thickness of the atmosphere. Discuss the result.

Exercise 2.3
The flow of a liquid film on an inclined plane
We study the flow defined in Fig. 2.2 of a liquid film of thickness h on an inclined plane
with inclination angle α.

(a) Check the correctness of the form of the Navier–Stokes equation (2.9a) and of the
solution for vx(z) given in Eq. (2.10).

(b) Let the liquid be water and calculate the speed vx(h) of the free surface of the film
in the case of h = 100 µm and α = 30◦.
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Exercise 2.4
Symmetry and the structure of the Poiseuille flow solution
Prepare a black-board presentation of the symmetry arguments leading from the Navier–
Stokes equation in the general case to the special form of the solution Eq. (2.18a) of the
velocity field for the steady-state Poiseuille flow.

Exercise 2.5
Poiseuille flow profile in a circular channel
Sketch the flow profile vx(r, φ) of Eq. (2.33a) valid for a circular channel.

Exercise 2.6
The physical origin of the correction term in the rectangular channel
Find a qualitative argument that explains the correction term in Eq. (2.49) for the
Poiseuille flow rate Q in a flat, rectangular channel.

Exercise 2.7
Couette flow in an inclined channel
Consider the inclined-plane flow of Fig. 2.2 but substitute the no-stress boundary condition
∂zvx(h) = 0 of Eq. (2.9c) with the Coeutte flow boundary vx(h) = v0 of Eq. (2.12c) similar
to the one shown in Fig. 2.3. Determine the resulting velocity field vx(z).

Exercise 2.8
Poiseuille flow in an inclined channel
Extend the analysis presented in Section 2.4.1 for the Poiseuille flow through a channel
with an arbitrary cross section by inclining the channel an angle α with respect to the yz
plane and taking the effect of gravity into account.

Exercise 2.9
Combined Poiseuille and Couette flow
Extend the analysis presented in Section 2.3 for the planar Couette flow by applying a
pressure difference ∆p over a section of length L in the x direction. Determine the velocity
field vx(y, z) and the flow rate Q for this combined Poiseuille and Couette flow.

Exercise 2.10
Contour plots of the velocity fields
Use your favorite computer program to generate contour or surface plots illustrating the
different Poiseuille velocity fields calculated in Section 2.4.

Exercise 2.11
Stokes drag on a spherical particle in a microchannel
Consider the Stokes drag discussed in Section 2.6.

(a) Beginning from Eq. (2.65) prove the general expression Eq. (2.66) for the Stokes
drag force on a spherical, rigid particle.

(b) Discuss under which circumstances this expression can be applied to the motion
of spherical particles inside microchannels.
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2.8 Solutions

Solution 2.1
Generation of hydrostatic pressure in microchannels
We use g = 9.82 m/s2, ρH2O = 103 kg/m3, and ρHg = 13.6× 103 kg/m3.

(a) ∇p = ∇p0 −∇(ρgz) = 0− ρg (0, 0, 1) = −ρgez.
(b) For height H we have p(x, y, z) = pH(z) = ρg(H−z) = 9.82×103Pam−1 (0.1 m−z),

so pA = pH(100 µm) = 981 Pa, pB = pH(0 µm) = 982 Pa, pC = pH(−100 µm) = 983 Pa.
(c) H(ρ) = p0/(ρg) = 1

ρ 9.82× 103 kg/m2 so HH2O = 10.3 m and HHg = 0.76 m.

Solution 2.2
The thickness of the atmosphere of the Earth
Let p0 = 105 Pa and ρ0 = 1 kgm−3 be the pressure and density of air at ground level. For
an ideal isothermal gas pV or p/ρ is constant, so ρ = (ρ0/p0) p. Thus Eq. (2.2b) becomes
0 = −∂zp− (ρ0g/p0) p or ∂zp = −(1/λair) p, where λair = p0/(ρ0g) = 104 m. This leads to
p(z) = p0 exp(−z/λair).

In the isothermal model the density of the atmosphere decreases exponentially with
a characteristic length of 10 km. This is in accordance with the fact that a 10 m high
water column having ρ = 1000 kgm−3 can be balanced by a 10 km high air column having
ρ = 1 kg m−3. Also commercial jet airliners fly at an altitude of 10 km, where there is
enough air for the jet engines to work, but less density providing less air resistance.

Solution 2.3
The flow of a liquid film on an inclined plane
Check carefully the assumptions and calculations leading to Eqs. (2.7), (2.8), and (2.9).

(a) Upon insertion of Eq. (2.10) into the left-hand side of Eq. (2.9) we get η∂ 2
z vx(z) =

η
[
sinαρg/(2η)

]
∂ 2

z

[
2hz−z2

]
= sin α(ρg/2)[0−2] = −ρg sinα. Moreover, for the boundary

conditions we find vx(0) = 0 and ∂zvx =
[
sinαρg/(2η)

]
(2h− 2z) ⇒ ∂zvx(h) = 0.

(b) vx(h=100µm) =
[
sin(30◦)(103 kg

m3 × 10 m
s2

)/(2×10−3 Pa s)
]
(10−4 m)2 = 0.025 m

s .

Solution 2.4
Symmetry and the structure of the Poiseuille flow solution
Distinguish clearly between physical and mathematical arguments. Begin by a clear for-
mulation of the physical assumptions and arguments that leads to the special form of the
velocity field. Insert this velocity field in the full Navier–Stokes equation and reduce it
using mathematical arguments.
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Solution 2.5
Poiseuille flow profile in a circular channel
Utilizing the connection between Cartesian and
cylindrical coordinates we get

vx(y, z) = vx(r cosφ, r sinφ) = v0

[
1−

(
r

a

)2]
,

which is plotted in the figure to the right.

�

�

�
�

Solution 2.6
The physical origin of the correction term in the rectangular channel
The flow rate is Q‖ = h3w∆p/(12ηL) in a section of width w in the infinite parallel-plate
channel. The flow rate Q¤ = (1− α)Q‖ in a rectangular channel of the same width must
be smaller by a relative amount α, since the velocity at the side walls must be zero. The
difference between the two channels is solely due to the two side-regions closer than h/2
from the sides, since for any point outside these regions the two channels appear identical
as the top and bottom walls are closer than the sides. In the parallel-plate channel the
flow rate in one side-region of width h/2 is Q‖(h/2)/w. Assuming a linear drop in local
flow rate in the two side regions of the rectangular channel we can estimate the flow rate
as Q¤ = Q‖−2× 1

2×Q‖(h/2)/w = (1−0.5h/w)Q‖ not far from the more exact expression
Q¤ = (1− 0.63h/w)Q‖.

Solution 2.7
Couette flow in an inclined channel
The given problem turns Eq. (2.9) into η ∂ 2

z vx(z) = −ρg sinα, vx(0) = 0, and vx(h) = 0.
Only the last boundary condition has changed, so the solution vx(z) is still a parabola,
but with changed zeros compared to Eq. (2.10). Introducing the constant u0 ≡ sinαρg

2ηh2

of dimension velocity, it is readily verified that the solution is

vx(z) = u0

[(
1 +

v0

u0

)
− z

h

]
z

h
.

Solution 2.8
Poiseuille flow in an inclined channel
Eq. (2.18) for the horizontal Poiseuille flow is only changed by adding a gravity-related
term like Eq. (2.9a) to the Navier–Stokes equation Eq. (2.18a) resulting in the equations
vx(y, z) = 0 and

[
∂ 2

y + ∂ 2
z

]
vx(y, z) = − ∆p

ηL − ρg
η sinα = − 1

ηL

(
∆p + ρgL sinα

)
. The result

is a Poiseuille flow an effective pressure drop given by ∆peff = ∆p + ρgL sinα.

Solution 2.9
Combined Poiseuille and Couette flow
To the planar Couette flow presented in Section 2.3 is applied a pressure difference ∆p over
a section of length L in the x direction. The differential equation and boundary condtions
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for vx(z) becomes

∂ 2
z vx(z) = −∆p

ηL
, (2.67a)

vx(0) = 0, (no-slip) (2.67b)
vx(h) = v0, (no-slip on moving wall). (2.67c)

Utilizing the linear structure of the differential equation it is easily verified that the fol-
lowing sum is a solution:

vx(z) = vP
x (z) + vC

x (z). (2.68)

Here vP
x (z) solves the Poiseuille problem Eq. (2.51),

∂ 2
z vP

x (z) = −∆p

ηL
, (2.69a)

vP
x (0) = 0, (no-slip) (2.69b)

vP
x (h) = 0, (no-slip), (2.69c)

and vC
x (z) solves the Couette problem Eq. (2.12),

η ∂ 2
z vC

x (z) = 0, (2.70a)

vC
x (0) = 0, (no-slip) (2.70b)

vC
x (h) = v0, (no-slip on moving wall). (2.70c)

By direct insertion it is easily verified that

vx(0) = vP
x (0) + vC

x (0) = 0 + 0 = 0, (2.71)

vx(h) = vP
x (h) + vC

x (h) = 0 + v0 = v0, (2.72)

and furthermore that

∂ 2
z vx = ∂ 2

z

(
vP
x + vC

x

)
= ∂ 2

z vP
x + ∂ 2

z vC
x = −∆p

ηL
+ 0 = −∆p

ηL
. (2.73)

Combining this with Eqs. (2.13) and (2.52) leads to the velocity field for the combined
Poiseuille and Couette flow,

vx(z) =
∆p

2ηL
(h− z)z + v0

z

h
. (2.74)

The flow rate Q is found by integration,

Q = QP + QC =
h3w

12ηL
∆p +

v0

h

∫ w

0
dy

∫ h

0
dz z =

h3w

12ηL
∆p +

1
2
v0hw. (2.75)
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Solution 2.10
Contour plots of the velocity fields
Using Mathematica the contours plot of the velocity fields in an elliptical, a circular and
an equilateral triangular shaped channel become

Solution 2.11
Stokes drag on a spherical particle in a microshannel
Fig. 2.11 and the corresponding analysis concern the situation where the velocity of the
unperturbed fluid and of the sphere is V0 and 0, respectively.

(a) Translating the whole system by a constant velocity u the velocity of the unper-
turbed fluid and of the sphere is v = V0 + u and u, respectively. This constant-velocity
translation does not change the forces involved, so from Eq. (2.65) we get the desired
result: Fdrag = 6πη a V0 = 6πη a (v − u).

(b) The Stokes drag formula is only valid in infinite containers in which the liquid
moves very slowly. Hence for microsystems the formula is only valid a very low Reynolds
numbers and when the spherical particles are moving at distances several times their radius
away from the channel walls.
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Chapter 3

Hydraulic resistance

In Chapter 2 we studied the pressure driven, steady-state flow of an incompressible fluid
through a straight channel, the Poiseuille flow. We found that a constant pressure drop ∆p
resulted in a constant flow rate Q. This result can be summarized in the Hagen–Poiseuille
law

∆p = Rhyd Q =
1

Ghyd

Q, (3.1)

where we have introduced the proportionality factors Rhyd and Ghyd known as the hy-
draulic resistance and conductance, respectively. The Hagen–Poiseuille law Eq. (3.1) is
completely analogous to Ohm’s law, ∆V = R I, relating the electrical current I through
a wire with the electrical resistance R of the wire and the electrical potential drop ∆V
along the wire. The SI units used in the Hagen–Poiseuille law are

[Q] =
m3

s
, [∆p] = Pa =

N
m2

=
kg

m s2
, [Rhyd] =

Pa s
m3

=
kg

m4 s
. (3.2)

The concept of hydraulic resistance is central in characterizing and designing microfluidic
channels in lab-on-a-chip systems. In this chapter we study both fundamental and applied
aspects of hydraulic resistance.

3.1 Viscous dissipation of energy for incompressible fluids

Just as electrical resistance is intimately connected to dissipation of energy in the form of
Joule heating, hydraulic resistance is due to viscous dissipation of mechanical energy into
heat by internal friction in the fluid.

3.1.1 Viscous dissipation in time-dependent systems

To obtain an expression for the energy dissipation in terms of the viscosity and the velocity
field, we study the thought experiment sketched in Fig. 3.1. Consider an incompressible
fluid inside a channel performing an ideal steady-state Poiseuille flow at times t < 0. The
constant velocity field v is maintained by a constant over-pressure ∆p applied to the left

43
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Figure 3.1: A sketch of a liquid (light gray) performing a Poiseuille flow inside a channel
(dark gray). For times t < 0 the flow is in steady-state, and due to the over-pressure ∆p
applied to the left, the flow profile is a characteristic parabola. ∆p is suddenly turned off
at t = 0, but inertia keeps up flow. For t > 0 the fluid velocity diminishes due to viscous
friction, and in the limit t →∞ the fluid comes to rest relative to the channel walls.

end of the channel. The over-pressure ∆p is suddenly removed at t = 0, but of course the
fluid flow continues due to the inertia of the fluid. However, it is clear that the internal
viscous friction of the fluid gradually will slow down the motion of the fluid, and eventually
in the limit t →∞ the fluid will come to rest relative to the channel walls. As time passes
the kinetic energy of the fluid at t = 0 is gradually transformed into heat by the viscous
friction.

In the following we calculate the rate of change of the kinetic energy at any instant
t > 0, where the over-pressure has been removed. We neglect any influence of gravitational
and electrical forces, and we use that for an incompressible fluid the continuity equation
reads ∂jvj = 0. The kinetic energy of the fluid can be expressed as an integral over the
space Ω occupied by the channel,

Ekin =
∫

Ω
dr 1

2
ρ v2 =

∫

Ω
dr 1

2
ρ vivi, (3.3)

where we use the index notation. The rate of change of Ekin is

∂tEkin =
∫

Ω
dr ρ vi∂tvi. (3.4)

We can express the time-derivative ∂tvi using the Navier–Stokes equation (1.49),

ρ ∂tvi = −ρ vj∂jvi + η ∂j∂jvi. (3.5)

The rate of change of the kinetic energy can thus be written as

∂tEkin =
∫

Ω
dr

{
− ρ vivj∂jvi + η vi∂j∂jvi

}

=
∫

Ω
dr

{
− ∂j

[
vj

(1

2
ρ v2

i

)− η vi∂jvi

]
− η

(
∂jvi)

(
∂jvi

)}

= −
∫

∂Ω
da nj

[
vj

(1

2
ρ v2

i

)− η vi∂jvi

]
− η

∫

Ω
dr

(
∂jvi)

(
∂jvi

)
. (3.6)
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Figure 3.2: A sketch of the geometry for calculating the viscous energy dissipation in a
Poiseuille flow. The surface ∂Ω consists of three parts: the solid side wall ∂Ωwall (trans-
parent), the open inlet ∂Ω1 to the left (light gray), and the open outlet ∂Ω2 to the right
(light gray). The velocity field is parallel to the x direction, v = vx ex.

As indicated in Fig. 3.2 the surface ∂Ω consists of three parts: the solid side wall ∂Ωwall,
the open inlet ∂Ω1, and the open outlet ∂Ω2. The contribution to the surface integral in
Eq. (3.6) from ∂Ωwall is zero due to the no-slip boundary condition that ensures vi ≡ 0
on solid walls. The two contribution from ∂Ω1 and ∂Ω2 exactly cancels each other. The
reason is that the translation invariance of the Poiseuille flow problem makes the expression
in the square bracket independent of x and hence it is the same on the two end surfaces,
while the two normal vectors are opposite to each other n(∂Ω1) = −ex = −n(∂Ω2).

The viscous energy dissipation in a Poiseuille flow relaxing towards thermodynamical
equilibrium is therefore given by the volume integral

∂tEkin = −η

∫

Ω
dr

(
∂jvi

)(
∂jvi

)
= −η

∫

Ω
dr

[(
∂yvx

)2 +
(
∂zvx

)2
]
. (3.7)

In the last equality we have used the special form of the Poiseuille flow, v = vx(y, z) ex.
We note that since the kinetic energy is diminishing in time, so that ∂tEkin < 0, and since
the integrand is always positive, the viscosity coefficient η must be positive.

We let Wvisc denote the heat generated by the viscous friction. Thus ∂tEkin = −∂tWvisc

and we can write

∂tWvisc = −∂tEkin = η

∫

Ω
dr

(
∂jvi

)(
∂jvi

)
= η

∫

Ω
dr

[(
∂yvx

)2 +
(
∂zvx

)2
]
. (3.8)

3.1.2 Viscous dissipation of energy in steady-state

After having used the relaxing Poiseuille flow to obtain an expression for the rate of viscous
dissipation of energy, ∂tWvisc, we now turn to the steady-state Poiseuille flow. Consider
the usual case where the pressure p(∂Ω1) to the left on ∂Ω1 is higher than the pressure
p(∂Ω2) to the right on ∂Ω2,

p(∂Ω1) = p(∂Ω2) + ∆p. (3.9)

For such a flow the velocity field is constant and consequently the kinetic energy of the
fluid is constant. The rate ∂tWvisc of heat generation by viscous friction is balanced by
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Figure 3.3: (a) A sketch of the active part of a microfluidic dye laser: a rectangular
microchannel (the cavity) where the active dye is flowing in a liquid solution. (b) A
picture of the actual polymer-based laser chip. For proper functioning a certain flow rate
must be used, and hence it is crucial to know the hydraulic resistance of the channel (see
Exercise 3.7). Courtesy the group of Kristensen at MIC.

the mechanical power ∂tWmech put into the fluid by the pressure force,

∂tEkin = ∂tWmech − ∂tWvisc = 0. (3.10)

To calculate Wmech we note that in comparison with Eq. (3.5) the Navier–Stokes equation
now contains a non-zero pressure gradient and reads

ρ ∂tvi = −ρ vj∂jvi + η ∂j∂jvi − ∂ip. (3.11)

In analogy with Eq. (3.6) we can determine Wmech by multiplying the pressure term in
Eq. (3.11) by vi and integrating over volume,

∂tWmech =
∫

Ω
dr vi

(− ∂ip
)

= −
∫

Ω
dr ∂i

(
vip

)
= −

∫

∂Ω
da ni

(
vip

)
. (3.12)

As before the contribution from the solid walls at ∂Ωwall is zero due to the no-slip boundary
condition and only the inlet ∂Ω1 and outlet ∂Ω2 surface yield non-zero contributions. The
surface normals are opposite, n(∂Ω1) = −ex = −n(∂Ω2), and the pressure is constant at
each end-face, so we get

∂tWmech = p(∂Ω1)
∫

∂Ω1

da vx − p(∂Ω2)
∫

∂Ω2

da vx = ∆p

∫

∂Ω1

da vx(y, z) = Q ∆p. (3.13)

The second equality is obtained by using the translation invariance vx(∂Ω2) = vx(∂Ω1).
The result for the viscous dissipation of energy in steady-state Poiseuille flow is thus, as
expected, analogous to the expression for the electric power consumed by Joule heating in
a resistor, ∂tWelec = I ∆V ,

∂tWvisc = η

∫

Ω
dr

[(
∂yvx

)2 +
(
∂zvx

)2
]

= Q ∆p. (3.14)

See Exercise 3.2 for further examples of viscous power consumption in hydraulic resistors.
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3.2 Hydraulic resistance of some straight channels

In this section we will list a selection of the hydraulic resistance of specific channels, such
as the one shown in Fig. 3.3 and studied in Exercise 3.7.

Using the results derived in Section 2.4 for the Poiseuille flow in straight channels, it
is easy to list the hydraulic resistance Rhyd for the six different cross sections as done in
Table 3.1. Next to the analytical expressions for Rhyd is given numerical values for Rhyd.
These values are calculated using the viscosity of water and fixing the length L along the
channel axis to be 1 mm. The length-scales perpendicular to the axis are also of the order
100 µm.

The quoted results are all valid for the special case of a translation invariant (straight)
channel. This symmetry led to the vanishing of the non-linear term (v·∇)v in the Navier–
Stokes equation. However, to handle more general cases it would be very useful to find
out when the results for Rhyd can be used. This analysis is carried out in the next section,
where we shall learn that the dimensionless Reynolds number plays central role.

shape Rhyd Rhyd reference
expression [1011 Pa s

m3 ]

circle
a 8

π
ηL

1
a4

0.25 Eq. (2.30b)

ellipse
b a 4

π
ηL

1 + (b/a)2

(b/a)3
1
a4

3.93 Eq. (2.29)

triangle a a

a
320√

3
ηL

1
a4

18.48 Eq. (2.37)

two plates h
w 12 ηL

1
h3w

0.40 Eq. (2.53)

rectangle h
w

12 ηL

1− 0.63(h/w)
1

h3w
0.51 Eq. (2.49)

square h h
h

h 12 ηL

1− 0.917× 0.63
1
h4

2.84 Exercise 3.4

Table 3.1: A list over the hydraulic resistance for straight channels with different cross
sectional shapes. The numerical values are calculated using the following parameters:
η = 1 mPa s (water), L = 1 mm, a = 100 µm, b = 33 µm, h = 100 µm, and w = 300 µm.
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3.3 Shape dependence of hydraulic resistance

Given the results in Table 3.1 of the hydraulic resistance Rhyd in some straight channels
parallel to the x axis, it is natural to ask how Rhyd depends on the area A and perimeter
P of the cross section Ω in the yz plane with boundary ∂Ω,

A ≡
∫

Ω
dxdy, (3.15a)

P ≡
∫

∂Ω
d`. (3.15b)

A natural unit for the hydraulic resistance is R∗
hyd, which is given by dimensional analysis

as
R∗

hyd ≡
ηL

A2
, (3.16)

where L is the channel length and η the dynamic viscosity of the liquid. Typically, the
fluid flow is subject to a no-slip boundary condition at the walls ∂Ω and thus the actual
hydraulic resistance will depend on the perimeter as well as the cross-section area. This
dependence can therefore be characterized by the dimensionless geometrical correction
factor α given by

α ≡ Rhyd

R∗
hyd

=
A2

ηL
Rhyd. (3.17)

For Poiseuille flow the relation between the pressure drop ∆p, the velocity vx(y, z), and
the geometrical correction factor α becomes

∆p = RhydQ = αR∗
hydQ = αR∗

hyd

∫

Ω
dxdy vx(y, z), (3.18)

where Q is the volume flow rate.
In lab-on-a-chip applications, where large surface-to-volume ratios are encountered,

the problem of the bulk Poiseuille flow is typically accompanied by other surface-related
physical or bio-chemical phenomena in the fluid. The list of examples includes surface
chemistry, DNA hybridization on fixed targets, catalysis, interfacial electrokinetic phe-
nomena such as electro-osmosis, electrophoresis and electro-viscous effects as well as con-
tinuous edge-source diffusion. Though the phenomena are of very different nature, they
have at least one thing in common; they are all to some degree surface phenomena and
their strength and effectiveness depends strongly on the surface-to-volume ratio. It is
common to quantify this by the dimensionless compactness C given by

C ≡ P2

A . (3.19)

Below we demonstrate a simple dependence of the geometrical correction factor α on
the compactness C and our results thus point out a unified dimensionless measure of
flow properties as well as the strength and effectiveness of surface-related phenomena
central to lab-on-a-chip applications. Furthermore, our results allow for an easy evaluation
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of the hydraulic resistance for elliptical, rectangular, and triangular cross-sections with
the geometrical measure C being the only input parameter. Above we have emphasized
microfluidic flows because here a variety of shapes are frequently encountered. However,
our results are generally valid for all laminar flows.

Our main objective is to find the relation between the geometrical correction factor α
and the compactness C for various families of geometries.

The family of elliptical cross-sections is special in the sense that Rhyd is know analyt-
ically for given semi-axis lengths a and b, see Table 3.1. An explicit expression for the
geometrical correction factor α is obtained as follows

α(a, b) =
Rhyd

R∗
hyd

=
4
π ηL 1+(b/a)2

(b/a)3
1
a4

ηL 1
(πab)2

= 4π
(a

b
+

b

a

)
, (3.20)

which for a circle yields α(a, a) = 8π.
By straightforward algebra we can express the line integral for the perimeter P as an

integral over an angle θ, and the compactness C follows as

C(α) =
1

2π2

(∫ π

0
dθ

√
α +

√
α2 − (8π)2 cos θ

)2

. (3.21)

Expanding C(α) in α around α = 8π and inverting we get

α(C) =
8
3
C − 8π

3
+O([C − 4π]2), (3.22)

and in Fig. 3.4 we compare this approximate result (dashed line) with the exact solution
(solid line), obtained from a numerical evaluation of Eq. (3.21). Results of a numerical
finite-element solution of Poiseuille flow are also included (◦ points). As seen, there is a
close-to-linear dependence of α on C as described by Eq. (3.22).

For the rectangular channel with a width-to-height ratio γ = w/h, we can by combining
Eqs. (2.48c) and (3.17) obtain

α(γ) =
π3γ2

8




∞∑

n,odd

nγ

πn5
− 2

π2n5
tanh(nπγ/2)



−1

. (3.23)

The compactness is easily found as

C(γ) =
P2

A =
(2w + 2h)2

wh
= 8 + 4γ + 4/γ. (3.24)

Using that tanh(x) ' 1 for x À 1 we get

α(γ) ' 12π5γ2

π5γ − 186ζ(5)
, γ À 1, (3.25)
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Figure 3.4: Correction factor versus compactness for the elliptical, rectangular, and trian-
gular classes. The solid lines are the exact results, and the dashed lines indicate Eqs. (3.22),
(3.26), and (3.27). Numerical results from a finite-element simulation are also included (◦,
¤, and 4). Note that in the case of triangles all classes (right, isosceles, and acute/obtuse
scalene triangles — marked by different grayscale triangles) fall on the same straight line.

and by substituting γ(C) into this expression and expanding C(γ) around γ = 2 with
C(2) = 18, we obtain again a linear relation between α and C:

α(C) ≈ 22
7
C − 65

3
+O(

[C − 18]2
)
. (3.26)

In Fig. 3.4 we compare the exact solution, obtained by a parametric plot of Eqs. (3.23)
and (3.24), to the approximate result, Eq. (3.26). Results of a numerical finite-element
solution of Eq. (12.3a) are also included (¤ points). As in the elliptical case, there is a
close-to-linear dependence of α on C as described by Eq. (3.26).

For the equilateral triangle it follows from Table 3.1 that α = 20
√

3 and C = 12
√

3.
However, in the general case of a triangle with side lengths a, b, and c we are referred
to numerical solutions of the Poiseuille flow. In Fig. 3.4 we show numerical results (4
points), from finite-element simulations, for scaling of right triangles, isosceles triangles,
and acute/obtuse scalene triangles. The dashed line shows

α(C) =
25
17
C +

40
√

3
17

, (3.27)

where the slope is obtained from a numerical fit. As seen, the results for different classes
of triangles fall onto the same straight line. Since we have

C(a, b, c) =
8(a + b + c)2√

1
2

(
a2 + b2 + c2

)2 − (
a4 + b4 + c4

) (3.28)

the result in Eq. (3.27) allows for an easy evaluation of Rhyd for triangular channels.
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Finally, by using the results given in Section 2.5 we can calculate the kth multipolar
deformation of the circular cross section and thereby extend the analytical results for
Poiseuille flow beyond the few cases of regular geometries that we have treated above. By
continuing the perturbation calculation to fourth order in the perturbation parameter ε,
we can obtain analytical expressions for both the velocity field and the boundary shape.
This leads to analytical expressions for A and P, which in turns results in the following
expressions for α and C:

α = 8π

[
1 + 2(k − 1) ε2 +

47− 78k + 36k2 − 4k3

8
ε4

]
+O(

ε6
)
, (3.29)

C = 4π + 2π(k2 − 1) ε2. (3.30)

The result only involves even powers of ε since ε → −ε is equivalent to a shape-rotation,
which should leave α and C invariant, and as a consequence α depends linearly on C to
fourth order in ε,

α(C) =
8

1 + k
C − 8

3− k

1 + k
π +O(

ε4
)
. (3.31)

Note that although derived for k > 2 this expression coincides with that of the ellipse,
Eq. (3.22), for k = 2. Comparing Eq. (3.29) [to second order in ε] with exact numerics we
find that for ε up to 0.4 the relative error is less than 0.2% and 0.5% for k = 2 and k = 3,
respectively.

In summary, we have considered pressure-driven, steady state Poiseuille flow in straight
channels with various shapes, and found a close-to-linear relation between α and C. Since
the hydraulic resistance is Rhyd ≡ αR∗

hyd, we conclude that Rhyd depends linearly on
CR∗

hyd. Different classes of shape all display this linear relation, but the coefficients are
non-universal. However, for each class only two points need to be calculated to fully specify
the relation for the entire class. The difference is due to the smoothness of the boundaries.
The elliptical and harmonic-perturbed classes have boundaries without any cusps whereas
the rectangular and triangular classes have sharp corners. The over-all velocity profile
tends to be convex and maximal near the center-of-mass of the channel. If the boundary
is smooth the velocity in general goes to zero in a convex parabolic manner whereas a
concave parabolic dependence is generally found if the boundary has a sharp corner, as
can be proved explicitly for the equilateral triangle Eq. (2.34). Since the concave drop
is associated with a region of low velocity compared to the convex drop, geometries with
sharp changes in the boundary tend to have a higher hydraulic resistance compared to
smooth geometries with equivalent cross-sectional area.

3.4 The dimensionless Reynolds number

The proper way to see if the non-linear term (v·∇)v in the Navier–Stokes equation can be
neglected is to make the equation dimensionless. This means that we express all physical
quantities, such as length and velocity, in units of the characteristic scales, e.g., L0 for
length and V0 for velocity.
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3.4.1 Reynolds number for systems with only one length scale

If the system under consideration is characterized by only one length scale L0 and one
velocity scale V0, the expression of coordinates and velocity in terms of dimensionless
coordinates and velocity is

r = L0 r̃, v = V0 ṽ, (3.32)

where the tilde on top of a symbol indicates that the symbol is a quantity without physical
dimension, i.e., pure numbers. Once the length and velocity scale L0 and V0 has been fixed
the scales T0 and P0 for time and pressure follows,

t =
L0

V0

t̃ = T0 t̃, p =
ηV0

L0

p̃ = P0 p̃. (3.33)

Note that a quantity often can be made dimensionless in more than one way. Regarding
the pressure it is for example possible to choose P0 either as ηV0/L0 or as ρ V0

2. The
former gives the scale of pressure in the case of small velocities, such as in microfluidics,
whereas the latter is used at high velocities.

By insertion of Eqs. (3.32) and (3.33) into the Navier–Stokes equation and using the
straightforward scaling of the derivatives, ∂t = (1/T0) ∂̃ t and ∇ = (1/L0) ∇̃, we get

ρ

[
V0

T0

∂̃ tṽ +
V0

2

L0

(
ṽ ·∇̃)

ṽ
]

= −P0

L0

∇̃p̃ +
ηV0

L0
2 ∇̃2

ṽ, (3.34)

which after reduction becomes

Re
[
∂̃ tṽ +

(
ṽ ·∇̃)

ṽ
]

= −∇̃p̃ + ∇̃2
ṽ. (3.35)

Here we have introduced the dimensionless number Re, which is called the Reynolds
number, and which is defined as

Re ≡ ρV0L0

η
. (3.36)

We clearly see from Eq. (3.35) that for Re ¿ 1 the viscous term ∇̃2
ṽ dominates, whereas

in steady-state for Re À 1 the inertia term
(
ṽ ·∇̃)

ṽ is the most important term.
The corresponding dimensionless form of the incompressibility condition ∂ivi = 0 is

quite simple since ∂i = (1/L0)∂̃i and vi = V0 ṽ i,

∂̃iṽ i = 0. (3.37)

From this little analysis we can conclude that the solutions obtained for the ideal
Poiseuille flows, where the non-linear term (v ·∇)v is identically zero, remains approxi-
mately valid if the Reynolds number is small, Re ¿ 1.
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Figure 3.5: A sketch in the xz plane of an infinite, parallel-plate channel of height h. The
system is translation invariant in the y direction and fluid is flowing in the x direction due
to a pressure drop ∆p over the section of length L.

3.4.2 Reynolds number for systems with two length scales

Most systems are characterized by more than one length, which leads to a more involved
Reynolds number analysis. As an example, consider a section of length L and width
w of the infinite, parallel-plate channel with height h shown in Fig. 3.5. The system
is translation invariant in the y direction so that only the x and z coordinates enter in
the following analysis. Although the system as shown is also translation invariant in the
x direction, we perform the analysis as if this invariance is weakly broken rendering a
non-zero vertical velocity vz.

The two length scales entering the problem are the length L and the height h,

x = L x̃, z = h z̃, (3.38)

yielding the spatial derivatives

∂x =
1
L

∂̃x ≡ ε
1
h

∂̃x, ∂z =
1
h

∂̃z, (3.39)

where we have introduced the aspect ratio ε defined by

ε ≡ h

L
¿ 1. (3.40)

The characteristic velocity in the x direction is given by the mean velocity V0 = Q/(wh),
where Q is the flow rate through a section of width w and height h. The characteristic
time T0 is therefore given by

t =
L

V0

t̃ = T0 t̃. (3.41)

From this follows the expressions for the two velocity components,

vx = V0 ṽx, vz =
h

T0

ṽz = ε V0 ṽz. (3.42)

Finally, the characteristic pressure is given by the pressure drop P0, see Table 3.1,

P0 = RhydQ ' ηL

h3w
Q =

ηV0L

h2
, (3.43)
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Figure 3.6: (a) Two hydraulic resistors, R1 and R2, connected in series forming a back-step
of height h2−h1. The shown velocity field and streamlines are calculated in FemLab. Here
Re = 0.01 so for this series coupling the Hagen–Poiseuille law states ∆p = (R1 + R2)Q.
(b) Here Re = 100 and a convection roll appears after the back-step. The large inertia
forces makes the simple Hagen–Poiseuille law invalid, ∆p 6= (R1 + R2)Q.

where for convenience we have dropped the numerical factor of 12.
If we follow the convention that the Reynolds number Re should contain the smallest

length scale of the problem, here h, we define

Re ≡ ρV0h

η
. (3.44)

Using the above mentioned expressions we can rewrite the two-component Navier–Stokes
equation and the continuity equation in terms of dimensionless variables. The result is

εRe
(
∂̃ t + ṽx∂̃x + ṽz∂̃z

)
ṽx = −∂̃xp̃ +

(
∂̃ 2

z + ε2∂̃ 2
x

)
ṽx, (3.45a)

ε3Re
(
∂̃ t + ṽx∂̃x + ṽz∂̃z

)
ṽz = −∂̃z p̃ +

(
ε2∂̃ 2

z + ε4∂̃ 2
x

)
ṽz, (3.45b)

∂̃xṽx + ∂̃z ṽz = 0. (3.45c)

To first order in ε in the limit of high aspect ratios, ε → 0, these equations become

εRe
(
∂̃ t + ṽx∂̃x + ṽz∂̃z

)
ṽx = −∂̃xp̃ + ∂̃ 2

z ṽx, (3.46a)

0 = −∂̃z p̃, (3.46b)

∂̃xṽx + ∂̃z ṽz = 0, (3.46c)

and we can conclude that the effective Reynolds number Reeff for this two-length-scale
problem is

Reeff = ε Re =
ρV0h

η

h

L
. (3.47)
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This effective Reynolds number can therefore be arbitrarily small compared to the con-
ventional Reynolds number given a sufficiently long channel.

3.5 Hydraulic resistance, two connected straight channels

When two straight channels of different dimensions are connected to form one long chan-
nel the translation invariance will in general be broken, and the expressions for the ideal
Poiseuille flow no longer apply. However, we expect the ideal description to be approxima-
tively correct if the Reynolds number Re of the flow is sufficiently small. This is because a
very small value of Re corresponds to a vanishing small contribution from the non-linear
term in the Navier–Stokes equation, a term that is strictly zero in ideal Poiseuille flows
due to translation invariance.

The influence of the Reynolds number on the velocity field is illustrated in Fig. 3.6,
where results of numerical simulations using FemLab have been shown. Two infinite
parallel-plate channels with heights h1 and h2 and hydraulic resistances R1 and R2 are
joined in a series coupling forming a back-step of height h2−h1. At low Reynolds number
Re = ρV0h1/η = 0.01, panel (a), the transition from a perfect Poiseuille flow in R1

is smooth and happens on a length scale shorter than h1. At high Reynolds number
Re = ρV0h1/η = 100, panel (b), the transition happens on a length scale larger than
h1, and a convection roll forms in the entrance region of R2. This is a simple example
of how it is a fair approximation to assume ideal Poiseuille flows in individual parts of a
microfluidic network at low Reynolds numbers, whereas the approximation is dubious at
high Reynolds numbers.

Note that in microfluidics the Reynolds number Re = ρV0L0/η tends to be low due to
the small length scales L0 involved.

3.5.1 Two straight channels in series

Consider the series coupling of two hydraulic resistors as shown in Fig. 3.7. If we assume
the validity of the Hagen–Poiseuille law for each of the resistors after they are connected,
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Figure 3.7: The series coupling of two channels with hydraulic resistance R1 and R2. The
simple additive law R = R1+R2 is only valid in the limit of low Reynolds number, Re → 0,
and for long narrow channels.
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Figure 3.8: The parallel coupling of two channels with hydraulic resistance R1 and R2.
The additive law for the inverse resistances R−1 = R1

−1 + R2
−1 is only valid in the limit

of low Reynolds number, Re → 0, and for long narrow channels far apart.

then using the additivity of the pressure drop along the series coupling it is straightforward
to show the law of additivity of hydraulic resistors in a series coupling,

R = R1 + R2. (3.48)

Bearing in mind the discussion in the previous subsection, the additive law is only valid
for low Reynolds numbers and for long and narrow channels.

3.5.2 Two straight channels in parallel

Consider the parallel coupling of two hydraulic resistors as shown in Fig. 3.8. If we assume
the validity of the Hagen–Poiseuille law for each of the resistors after they are connected,
then using the conservation of flow rate, i.e., Q = Q1 + Q2 in the parallel coupling it is
straightforward to show the law of additivity of inverse hydraulic resistances in a parallel
coupling,

R =
(

1
R1

+
1

R2

)−1

=
R1 R2

R1 + R2

. (3.49)

Bearing in mind the discussion in the previous subsection, the inverse-additive law is only
valid for low Reynolds numbers and for long and narrow channels far apart.

3.6 Compliance

The same form of Hagen-Poiseuille’s law and Ohm’s law means that pressure drop ∆p and
flow rate Q (volume V per time) are analogous to voltage drop ∆U and current I (charge
q per time), respectively. Now, since electric capacitance is given by C = dq/dU we are
led to introduce hydraulic capacitance, also known as compliance, given by

Chyd ≡ −dV
dp

, (3.50)

where the minus is chosen since the volume diminishes as the pressure increases. Com-
pliance exists because neither real fluids nor the chambers or channels containing them
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Figure 3.9: (a) Compliance due to a volume V of gas (white) trapped inside a closed rigid-
walled channel (dark gray) partly filled with a liquid piston (light gray). The hydraulic
resistance of the liquid-filled part of the channel is denoted Rhyd. Mass conservation
yields Q = −∂tV. (b) Compliance due to a soft-walled channel (dark gray) filled with
liquid (light gray). The pressure in the center of the channel is denoted pc, while the
hydraulic resistances of the first and second part of the channel are denoted R1 and R2,
respectively. Mass conservation yields Q1 = Q2 + Qc.

are completely rigid. Their volume change, often only by minute amounts, as the ambient
pressure changes.

As a simple example of compliance consider an amount of gas being trapped by an
advancing liquid acting as a liquid piston in a closed channel, as shown in Fig. 3.9(a). The
compliance of the gas is very large compared to that of the liquid and the channel wall, so
the latter two can be neglected. At atmospheric pressure p0 the gas fills the volume V0,
but as the liquid advances the volume V and pressure p of the gas changes. Assuming an
isothermal process, the ideal gas law leads to pV = p0V0 and consequently Chyd = p0V0/p2.
If the pressure does not deviate much from p0 we get Chyd ≈ V0/p0. For time t < 0 the
pressure is everywhere p0. Then assume that at time t = 0 the pressure at the liquid inlet
suddenly is increased from p0 to p0 + ∆p. The liquid begins to advance with a flow rate
Q(t) leading to a decrease in the volume of the gas given by −∂tV = Q(t). The chain-rule
gives us Q(t) = −∂tV = −(∂pV)∂tp = Chyd∂tp, and hence by Hagen-Poiseuille’s law

(p0 + ∆p)− p = RhydQ = −Rhyd∂tV = RhydChyd∂tp. (3.51)

The solution for the gas pressure p(t) is easily seen to be analogous to the voltage across
a charging capacitor with a characteristic RC-time τ ,

p(t) = p0 +
(
1− e−t/τ

)
∆p, τ ≡ RhydChyd. (3.52)

As a second example of compliance we consider a simple model of a soft-walled channel
filled with an incompressible liquid as sketched in Fig. 3.9(b). If the pressure increases
inside the channel, the latter will expand. The compliance Chyd of the channel is a given
constant related to the geometry and the material properties of the channel walls. As
a simplification we model the channel as consisting of two sub-channels with hydraulic
resistances R1 and R2, respectively, connected in series. The pressure pc at the point,
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Figure 3.10: (a) The equivalent circuit diagram corresponding to the liquid piston setup
of Fig. 3.9(a) where Rhyd is the hydraulic resistance of the liquid-filled part of the channel,
while Chyd is the compliance of the trapped air. (b) The equivalent circuit diagram
corresponding to the soft-walled channel of Fig. 3.9(b), where R1 and R2 are the hydraulic
resistances of each part of the channel, while Chyd is the compliance of the soft wall.

where the two sub-channels connect, determines the expansion of the whole channel. As
before we let the pressure at the inlet be p0 for time t < 0 and p0 + ∆p for time t > 0.
The flow rate at the inlet and the outlet are given by Q1 = (p0 + ∆p − pc)/R1 and
Q2 = (pc − p0)/R2, respectively, while the rate of volume expansion inside the chamber
is given by Qc = −∂tV = Chyd∂tpc. Since the liquid is assumed to be incompressible,
conservation of mass leads to Q1 = Q2 + Qc, and we arrive at the following differential
equation for the pressure pc inside the channel:

∂tpc = −
( 1

τ1

+
1
τ2

)
pc +

( 1
τ1

+
1
τ2

)
p0 +

1
τ1

∆p, (3.53)

where τ1 = R1Chyd and τ2 = R2Chyd are the hydraulic RC-times. The solution,

pc(t) = p0 +
(
1− e−

[
τ−1
1 +τ−1

2

]
t
) τ2

τ1 + τ2

∆p, (3.54)

is analogous to the voltage across a capacitor being charged through a voltage divider.

3.7 Equivalent circuit theory and Kirchhoff’s laws

Given the complete analog between the Hagen–Poiseuille law and Ohm’s law even to the
point of the rules for series/parallel couplings of resistors and capacitors, it is an obvious
advantage to apply the well-known methods from electric circuit theory to microfluidic net-
works on lab-on-a-chip systems. For a given microfluidic network one draws the equivalent
electric network. Channels with hydraulic resistances Rhyd become resistors, channels with
hydraulic compliance Chyd become capacitors, flow rates Q become currents, and pumps
delivering pressure differences ∆p become batteries. The equivalent network for the two
hydraulic systems of Fig. 3.9 are shown in Fig. 3.10, where the common ground for pres-
sure quite naturally has been chosen to be the atmospheric pressure p0. For any given
fluidic network or circuit one can then apply Kirchhoff’s laws:

a) The sum of flow rates entering/leaving any node in the circuit is zero.
b) The sum of all pressure differences in any closed loop of the circuit is zero.

(3.55)
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Figure 3.11: An equivalent circuit analysis on a so-called cascade electro-osmotic micro-
pump from Brask, Goranović and Bruus, Sensor. Actuat. Chem-B 92, 127-132 (2003).
(a) A sketch of three identical stages in the micropump, each consisting of ten narrow
channels in parallel followed by a single wide channel in series. (b) The equivalent circuit
diagram for calculation of the hydraulic resistance of a single stage. Courtesy the group
of Bruus at MIC.

The analogy is even more complete. The concept of impedance also applies for fluidic
circuits. As studied in Exercise 3.10 the flow rate response Q(t) to a harmonic pressure
stimulus p(t) = p0 + ∆p eiωt can be analyzed in terms of the resistive and capacitive
impedances ZR and ZC , respectively. Furthermore, although rarely important in mi-
crofluidics, the inertia Lhyd = ρL/A of fluids is analogous electrical inductance with the
inductive impedance ZL. The three impedances are given by

ZR ≡ Rhyd, ZC ≡
−i

ωChyd

, and ZL ≡ iωLhyd. (3.56)

We end this chapter by an example provided by the group of Bruus at MIC. In Fig. 3.11
is shown a sketch of a so-called cascade electro-osmotic pump. In Section 8.6 we shall study
how this pump work, but here we shall only consider the hydraulic resistance of the device.
The microfluidic network of the pump is not simple. It is crucial for the functionality of
the device that it consists of a series of identical stages. In Fig. 3.11(a) is shown three
such stages. Each stage contains two main parts, the collection of ten parallel narrow
channels, and the following wide single-channel. Each channel i is rectangular in shape,
so using Table 3.1 we can calculate the basic hydraulic resistances R

(i)
hyd. Then we need

to figure out the equivalent circuit diagram of the pump. This is a series coupling of
the hydraulic resistance Rstage of each single stages in the pump. In Fig. 3.11(b) Rstage

has been broken further down into a series coupling of three hydraulic resistors, one of
which is a parallel coupling of ten identical narrow channels. Thus, by using equivalent
circuit theory it is possible to obtain a good estimate of the total hydraulic resistance of
the microfluidic network without performing complicated numerical simulations. This is
extremely helpful when designing lab-on-a-chip systems, and if all the involved channels
are long and narrow, then the result is very accurate.
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3.8 Exercises

Exercise 3.1
The rate of dissipation of kinetic energy
Verify the calculation in Eqs. (3.6) and (3.7) for the dissipation of kinetic energy of an
incompressible fluid flowing inside a channel with rigid walls.

Exercise 3.2
Viscous power consumption in hydraulic resistors
The power consumption P due to Joule heating in an electrical wire is given by P = IU .
Likewise, the power consumption P due to viscous friction in a Poiseuille flow is given by
P = Q∆p.

(a) Use the Hagen–Poiseuille law for a circular channel and for a section of width w
of an infinite parallel-plate channel to express P in terms of viscosity, length scales and
pressure drop.

(b) Discuss how the power consumption depends on the various parameters.

Exercise 3.3
Series and parallel coupling of two hydraulic resistors
Prove the expressions Eqs. (3.48) and (3.49) for the total hydraulic resistance of two
hydraulic resistors coupled in series and in parallel, respectively.

Exercise 3.4
The hydraulic resistance of a square channel
An often used approximation for the flow rate Q in a rectangular channel induced by a
pressure drop ∆p is given in Eq. (2.49), while the exact result is the infinite series given
in Eq. (2.48d). Dividing by ∆p yields the inverse hydraulic resistance 1/Rhyd.

(a) Calculate the difference between the approximate and the exact 1/Rhyd for a square
where w = h.

(b) Show by paying special attention to the n = 1 term in the series Eq. (2.48d) that
an improved approximation for 1/Rhyd is

1
Rhyd

≈ h3w

12 ηL

[
1−

{
0.630− 192

π5

[
1− tanh

(π

2

w

h

)]} h

w

]
, (3.57)

and calculate for a square the deviation from the exact result.

Exercise 3.5
Reynolds number of a man and of a bacterium
A living species of linear size L moving in water can typically move its own distance per
second, implying a characteristic velocity U = L/(1 s). Estimate the Reynolds number of
a man and of a bacterium swimming in water. Comment the result.

Exercise 3.6
Reynolds number in a two-length-scale system
Consider the two-length-scale system of Section 3.4.2. Prove that Eqs. (3.45a)–(3.45c) are
correct forms of the dimensionless Navier–Stokes equation.
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Exercise 3.7
The pressure needed to run a lab-on-chip laser
Consider the fluidic lab-on-a-chip dye laser shown in Fig. 3.3. The liquid used in the laser
is ethanol with a viscosity at room temperature of 1.197 mPa s. The dimensions of the
rectangular channel are length L = 122 mm, width w = 300 µm, and height h = 10 µm.
For proper functioning the flow rate in the channel must be Q = 10 µL/hour. Calculate
the pressure needed to run this device properly.

Exercise 3.8
The hydraulic resistance of an actual micromixer
The micro-mixer below is designed to obtain a well-controlled mix of six different chem-
icals dissolved in water. Assume that all six inlet pressures are the same, p0 + ∆p, and
that the outlet pressure is p0.

(a) Construct the equivalent circuit
diagram of the mixer.

(b) Calculate the total hydraulic
resistance of the micro-mixer.

76 mm

69 mm

62 mm 14 mm

14 mm

7 mm

7 mm

50 mm

300 mm
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Flow

Top view

1

2
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4

5
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Exercise 3.9
The hydraulic resistance of a slightly deformed cylindrical channel
Consider a Poiseuille flow in a slightly deformed cylindrical channel, where the radius
a(x) depends weakly on x. The result Eq. (2.59) to lowest order in the deformation ε of
another shape-deformed Poiseuille flow problem indicates that the velocity field can be
approximated by the unperturbed field fitted into the deformed channel. Therefore, for
the deformed cylindrical channel we assume the x-dependent velocity field

vx(x, y, z) ≈ ∂xp

4η

(
a(x)2 − y2 − z2

)
. (3.58)

Use this to derive an approximate expression for the hydraulic resistance Rhyd for an
deformed cylinder of length L with a weakly varying radius a(x).

Exercise 3.10
A model of a microchannel with compliance
Consider the model Fig. 3.9(b) of a microchannel with compliance due to soft walls.
Assume an oscillating inlet pressure ∆p(t) = ∆p eiωt, and use the equivalent circuit
diagram of Fig. 3.10(b) to analyze the flow rate Q1(t) = Q1 eiωt in steady-state.

(a) Find the hydraulic impedance Zhyd of the microchannel by use of Fig. 3.10(b).
(b) Assume R1 = R2 = R and find Q1 in terms of a frequency-dependent prefactor

and the ratio ∆p/R.
(c) Calculate Q1 in the limits ω → 0 and ω →∞ and discuss the result.
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3.9 Solutions

Solution 3.1
The rate of dissipation of kinetic energy
Distinguish clearly between physical and mathematical arguments. Begin by a clear for-
mulation of the physical assumptions and arguments that leads to the starting point of
the analysis. Remember that a repeated index in the index notation implies a summation
over that index: ∂jvj ≡

∑3
j=1 ∂jvj = ∂xvx + ∂yvy + ∂zvz.

Solution 3.2
Viscous power consumption in hydraulic resistors
The power consumption in a circular and an infinite parallel-plate channel are denoted
P© and P‖, respectively.

(a) P = Q∆p = Rhyd(∆p)2, so P© = 8ηL(∆p)2/(πa4) and P‖ = 12ηL(∆p)2/(wh3).
(b) In both cases P ∝ ηL(∆p)2. The geometries influence P slightly differently:

P© ∝ a−4 while P‖ ∝ w−1h−3, but in both cases the power increases significantly upon
down-scaling of the smallest transverse length, channel radius a or channel height h.

Solution 3.3
Series and parallel coupling of two hydraulic resistors
For a series coupling the flow rates in each resistor are identical, Q1 = Q2 = Q, while
the partial pressure drops add up to the total pressure drop, ∆p = ∆p1 + ∆p2. Using
Hagen–Poiseuille’s law on the latter relation yields

RhydQ = R1Q1 + R2Q2 =
(
R1 + R2

)
Q, (3.59)

from which the desired result follows after division by Q.
For a parallel coupling the pressure drop over each resistor are identical, ∆p1 = ∆p2 =

∆p, while the flow rates add up to the total flow rate, Q = Q1 + Q2. Using Hagen–
Poiseuille’s law on the latter relation yields

∆p

R
=

∆p1

R1

+
∆p2

R2

=
( 1

R1

+
1

R2

)
∆p, (3.60)

from which the desired result follows after division by ∆p.

Solution 3.4
The hydraulic resistance of a square channel
The exact result for the flow rate in a square channel, where h = w, is obtained numerically
from Eq. (2.48d) by summing a large but finite number of terms in the rapidly converging
sum,

Qexact = Q0

[
1−

∞∑

n,odd

1
n5

192
π5

tanh
(

1

2
nπ

)]
= 0.4217 Q0. (3.61)

(a) For a square channel, where h = w, the approximation Eq. (2.49) for the flow rate
can be written as

Qapprox,1 ≈ Q0

[
1− 0.630

]
= 0.370 Q0. (3.62)
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The relative error is
Qapprox,1 −Qexact

Qexact

= −0.1227. (3.63)

(b) An improved approximation for Q in the square channel is obtained as follows. We
note that tanh(π/2) = 0.9172, while tanh(3π/2) = 0.9998. It is thus a fair approximation
to state that tanh(nπ/2) = 1 for n ≥ 3, and we arrive at

Qapprox,2

Q0

= 1−
∞∑

n,odd

1
n5

192
π5

tanh
(

1

2
nπ

)
(3.64)

≈ 1− 192
π5

tanh
(

1

2
π
)
− 192

π5

∞∑

n=3,5,7

1
n5

(3.65)

= 1− 192
π5

∞∑

n=1,3,5

1
n5

+
192
π5

− 192
π5

tanh
(

1

2
π
)

(3.66)

= 1−
{

0.630− 192
π5

[
1− tanh

(
1

2
π
)]}

. (3.67)

Calculating the numerical value leads to

Qapprox,2 = 0.4220 Q0. (3.68)

The relative error of this approximation is

Qapprox,2 −Qexact

Qexact

= 0.0006. (3.69)

Solution 3.5
Reynolds number of a man and of a bacterium
Since U = L/(1 s) we find Re = ρUL/η = L2×106m−2. Now Lman ≈ 1 m and Lbact ≈ 1 µm
imply Reman = 106 and Reman = 10−4. The motion in water of a man and of a bacterium
is clearly dominated by inertia and viscous damping, respectively.

Solution 3.6
Reynolds number in a two-length-scale system
Once the dimensionless derivatives in Eq. (3.39) have been introduced, the result Eqs. (3.45a)–
(3.45c) follow by direct substitution into the Navier–Stokes and continuity equations.

Solution 3.7
The pressure needed to run a lab-on-chip laser
The required flow rate is Q = 10 µL/hour = 10× 10−9 m3/(3600 s) = 2.77× 10−12 m3/s
while the hydraulic resistance is Rhyd = 12ηL/[wh3(1−h/w)] = 5.97×1015 Pas/m3. This
results in an operating pressure of ∆p = RhydQ = 16.6 kPa.
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Solution 3.8
The hydraulic resistance of an actual micromixer
The equivalent diagram of the micro-mixer is shown to the right,
where each piece of channel is represented by a resistor. The top
six resistors 1-3 and a-c in the first part of the diagram forms an
effective resistor R∗ identical to the bottom six resistors. The cir-
cuit is thus equivalent to a parallel coupling of two R∗-resistors in
series with the outlet resistor R0, thus Rhyd = 1

2R∗+R0. Resistor
R∗ consists of R1 and Ra in series, the resultant of which is cou-
pled in parallel with R2, the resultant of which is coupled in series
with Rb, the resultant of which is coupled in parallel with R3, the
resultant of which is coupled in series with Rc.
We thus get
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Rhyd =
1
2

[({[
(R1 + Ra)

−1 + R−1
2

]−1 + Rb

}−1
+ R−1

3

)−1

+ Rc

]
+ R0. (3.70)

The resistance of each channel segment i is Ri = αLi = 12ηLi/[wh3(1 − h/w)] = Li ×
3.84×1014 Pas/m4. The constant α can be taken outside all the parentheses in Eq. (3.70)
leaving just the lengths, where L0 = 14 mm, L1 = 62 mm, L2 = 69 mm, L3 = 76 mm,
La = 14 mm, Lb = 14 mm, and Lc = 76 mm. The final result is Rhyd = 1.25×1013 Pas/m3.

Solution 3.9
The hydraulic resistance of a slightly deformed cylindrical channel
As a and ∂xp now depend of x we write Eq. (2.30b) as Q = (π/8η)a4(x) ∂xp(x). Hence

∆p =
∫ L

0
dx ∂xp =

[
8η

π

∫ L

0
dx

1
a4(x)

]
Q, or Rhyd =

8η

π

∫ L

0
dx

1
a4(x)

. (3.71)

Solution 3.10
A model of a microchannel with compliance
R1 is in series with the parallel coupling of R2 and Chyd having the RC-time τ = R2Chyd.

(a) Zhyd = R1 +
(
R−1

2 + iωChyd

)−1 = R1 + R2

(
1 + iωτ

)−1.

(b) Q1 =
∆p

Zhyd

=
1

1 + (1 + iωτ)−1

∆p

R
=

[2 + (ωτ)2] + iωτ

4 + (ωτ)2
∆p

R

(c) For ω → 0 we obtain Q1 = ∆p
2R , i.e., the channel wall is always fully expanded thus

leading all flow through both resistors. For ω → ∞ we obtain Q1 = ∆p
R , i.e., no liquid

flows through R2 as it after passing R1 stays inside the ever expanding/relaxing channel.



Chapter 4

Time-dependent phenomena

So far we have only made in-depth analysis of systems in steady-state. The theme in
this chapter is time-dependent phenomena. Three selected topics will be treated: dif-
fusion and convection of uncharged particles dissolved in liquid solutions, the transient
decay of a Poiseuille flow in a cylindrical microfluidic channel when a constant driving
pressure is applied abruptly, and the accelerated motion of a spherical body in a fluid.
Not surprisingly, the mathematical treatment becomes more complex than in the previous
chapters.

4.1 A random walk model of diffusion

Consider a solution consisting of some particles, the solute, dissolved in a liquid, the
solvent. Diffusion is the motion of the solute in the solvent from regions of high to low
concentrations of the solute, and it is the result of thermally induced random motion of the
particles, such as Brownian motion. Pure diffusion of the solute occurs when the velocity
field of the solvent is zero, while in case of non-zero velocity fields the motion of the solute
is partly convective, since the dissolved particles are carried along by the solvent.

Our discussion of diffusion begins by studying the simple constant-step random walker
model of diffusion. Later we formulate and solve the diffusion equation for continuous
concentration fields of the solute.

As a 1D toy-model of diffusion we consider a particle that executes a constant-step
random walk along the x axis. Such a random walk consists of a number of consecutive,
uncorrelated steps. It takes the same time τ for each step to be performed, and during
each step the particle moves the distance ∆xi = ±`, where ` is a constant step length, and
where there is equal probability for choosing either sign. That the steps are statistically
uncorrelated is expressed mathematically through the mean value 〈∆xi∆xj〉 as

〈∆xi∆xj〉 = `2 δij . (4.1)

At time t = 0 the particle is at x = x0 = 0. At time t = Nτ the particle has performed N

65
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steps, and it is at the position xN given by

xN =
N∑

i=1

∆xi, ∆xi = ±`. (4.2)

Consider M such constant-step random walks ending at x
(j)
N , j = 1, 2, . . . , M . Each of

these random walks consists of N random steps ∆x
(j)
i = ±`. The mean value 〈xN 〉 of the

final positions is

〈xN 〉 ≡
1
M

M∑

j=1

x
(j)
N =

1
M

M∑

j=1

(
N∑

i=1

∆x
(j)
i

)
=

N∑

i=1

(
1
M

M∑

j=1

∆x
(j)
i

)
=

N∑

i=1

〈∆xi〉 = 0. (4.3)

The last equality follows from the assumption of equal probability for stepping either +`
or −`. As expected the mean value is zero, and clearly this quantity does not reveal the
kinematics of diffusion. We therefore continue by calculating 〈x2

N 〉 related to the statistical
spread in the final position of the particles,

〈x2
N 〉 ≡

1
M

M∑

j=1

[
x

(j)
N

]2
=

1
M

M∑

j=1

(
N∑

i=1

∆x
(j)
i

)(
N∑

k=1

∆x
(j)
k

)
=

1
M

M∑

j=1

N∑

i=1

N∑

k=1

∆x
(j)
i ∆x

(j)
k .

(4.4)
Now follows a standard trick often used in statistics. In the ik double sum we collect the
terms where k = i, the so-called diagonal terms, and those where k 6= i, the so-called off-
diagonal terms. This enables a straightforward evaluation of the average over the ensemble
of random walks j,

〈x2
N 〉 =

1
M

M∑

j=1

(
N∑

i=1

[
∆x

(j)
i

]2
+

N∑

i=1

N∑

k 6=i

∆x
(j)
i ∆x

(j)
k

)
= N`2 +

N∑

i=1

N∑

k 6=i

〈∆xi∆xk〉. (4.5)

In the last equality we have used that
[
∆x

(j)
i

]2 = (±`)2 = `2 regardless of the sign
of the random step. We now use that k 6= i in the last term implies that ∆xi and
∆xk are statistically independent so the probability of having the summand equal to
(+`)(−`) = (−`)(+`) = −`2 is the same of that of having (+`)(+`) = (−`)(−`) = +`2.
Thus the last term vanish upon averaging over random walkers, and we get

〈x2
N 〉 = N`2. (4.6)

From Eqs. (4.3) and (4.6) we find the root-mean-square displacement by diffusion, the
so-called diffusion length `1D

diff,N , of the random walker taking N steps in 1D to be

`1D
diff,N ≡

√
〈x2

N 〉 − 〈xN 〉2 =
√

N `. (4.7)

Reintroducing time as t = Nτ , where τ is the time it takes to perform one step, leads to

`1D
diff(t) =

√
t

τ
` =

√
`2

τ
t =

√
Dt, (4.8)
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(a)

N = 0

(b)

N = 26

(c)

N = 28

(d)

N = 210

Figure 4.1: Constant-step random walk with step-length ` in 2D illustrating molecular
diffusion. The diffusion length after N steps is expected to be `2D

diff =
√

2N `. (a) Initial
configuration of 81 particles near the origin of the coordinate system. (b) The position of
the particles after 26 random-walk steps. The observed and expected diffusion lengths are
0.57 ` and 0.57 `, respectively. (c) After 28 random-walk steps; the observed and expected
diffusion lengths are 1.18 ` and 1.13 `, respectively. (d) After 210 random-walk steps; the
observed and expected diffusion lengths are 2.30 ` and 2.26 `, respectively.

where the so-called diffusion constant D has been introduced,

D ≡ `2

τ
. (4.9)

It is a typical and remarkable feature of diffusion kinematics that the diffusion length
depends on the square-root of time as seen in Eq. (4.8). Ultimately, this dependence
makes diffusion an extremely slow process of mixing over macroscopical distances. Even
in microfluidic systems diffusion may still be a very slow process, see Eq. (4.26).

The random walk model of diffusion is easily extended to the 2D xy plane. Starting
at the origin, the particle position RN after N steps ∆ri is given by

RN =
N∑

i=1

∆ri, ∆ri = (±`) ex + (±`) ey, (4.10)

where there is an equal probability for any combination of the signs. If we decompose the
motion in x and y components, which are statistically independent, we find

〈R2
N 〉 = 〈x2

N + y2
N 〉 = 〈x2

N 〉+ 〈y2
N 〉 = 2N`2. (4.11)

Thus in 2D the diffusion length becomes

`2D
diff(t) =

√
2N ` =

√
2Dt. (4.12)

A numerical example of such a random walk in 2D is shown in Fig. 4.1

4.2 The convection-diffusion equation for solutions

In Chapter 1 we studied the continuity equation and the Navier–Stokes equation for a
homogeneous liquid with density ρ(r) and momentum density ρ(r) v(r). This concept is
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now extended to the case of a solution where several fluids α are mixed each with density
ρα; the actual mass per volume in the solution. The total density of the fluid is called ρ,

ρ(r) ≡
∑
α

ρα(r), (4.13)

and likewise the fluid velocity v is defined in terms of the total momentum density of
the solution — including that due to diffusion. The arguments leading to the continuity
equation (1.30) for the homogeneous fluid thus still holds for the heterogeneous solution,

∂tρ + ∇·(ρv)
= 0. (4.14)

The concentration cα(r, t) of the solute is defined as the density fraction

cα(r, t) ≡ ρα(r, t)
ρ(r, t)

, (4.15)

while the mass current density Jα for solute α must be written in terms of a convection
current density Jconv

α , due to the global velocity field v of the solution, and a diffusion
current density Jdiff

α , due to the random motion of the solute relative to the solution as
discussed in the previous section,

Jα ≡ Jconv
α + Jdiff

α = ραv + Jdiff
α = cαρv + Jdiff

α . (4.16)

The continuity equation for the solute density cαρ can now be formulated in analogy with
Eqs. (1.27) and (1.28), but now with the extra current density Jdiff

α added to the flux
through the surface,
∫

Ω
dr ∂t

(
cαρ

)
= −

∫

∂Ω
da n·

(
cαρv(r, t) + Jdiff

α

)
= −

∫

Ω
dr ∇·

(
cαρv(r, t) + Jdiff

α

)
. (4.17)

This equation can only be true for arbitrary Ω if the integrands are identical,

∂t

(
cαρ

)
= −∇·

(
cαρv(r, t) + Jdiff

α

)
, (4.18)

which by use of Eq. (4.14) can be reduced to

ρ
[
∂tcα + v·∇cα

]
= −∇·Jdiff

α . (4.19)

The diffusion current density is non-zero only when gradients in the density of the
solute are present. For weak solutions we expect only the lowest order gradients to play a
role, which is expressed by Fick’s law,

Jdiff
α = −Dα ρ ∇cα. (4.20)

Inserting Fick’s law into Eq. (4.19) leads to the convection-diffusion equation for the
concentration cα of solutes in weak solutions having a velocity field v,

∂tcα + v·∇cα = Dα ∇2cα. (4.21)

The constant Dα is in analogy with Eq. (4.9) known as the diffusion constant for solute α
in the solvent,

Dα, the diffusion constant of solute α in the solvent; SI unit is m2/s. (4.22)
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4.3 The diffusion equation

In the following we consider the diffusion of a single solute and therefore suppress the
index α. If the velocity field v of the solvent is zero, convection is absent and Eq. (4.21)
becomes the diffusion equation,

∂tc = D ∇2c. (4.23)

Simple dimensional analysis of this equation can already reveal some important physics.
It is clear that if T0 and L0 denotes the characteristic time- and length-scale over which
the concentration c(r, t) varies, then

L0 =
√

DT0 or T0 =
L2

0

D
, (4.24)

which resembles Eq. (4.8). The diffusion constant D thus determines how fast a concen-
tration diffuses a certain distance. Typical values of D are

D ≈ 2× 10−9 m2/s, small ions in water, (4.25a)

D ≈ 4× 10−11 m2/s, 30-base-pair DNA molecules in water, (4.25b)

D ≈ 1× 10−12 m2/s, 5000-base-pair DNA molecules in water, (4.25c)

which yield the following times T0 for diffusion across the typical microfluidic distance
L0 = 100 µm,

T0(100 µm) ≈ 5 s, small ions in water, (4.26a)
T0(100 µm) ≈ 250 s ≈ 4 min, 30-base-pair DNA molecules in water, (4.26b)

T0(100 µm) ≈ 104 s ≈ 3 h, 5000-base-pair DNA molecules in water. (4.26c)

Let us now turn to some analytical solutions of the diffusion equation.

4.3.1 Limited point-source diffusion

Consider a small drop containing N0 ink molecules injected at position r = 0 at time t = 0
in the middle of a huge tank of water. The initial point-like concentration acts as the
source of the diffusion, and it can be written as a Dirac delta function1

c(r, t = 0) = N0 δ(r). (4.27)

The ink immediately begins to diffuse out into the water, and it is easy to show by
inspection that the solution to the diffusion equation (4.23) given the initial condition
Eq. (4.27) is

c(r, t > 0) =
N0

(4πDt)
3
2

exp
(
− r2

4Dt

)
. (4.28)

This is an example of a limited diffusion process because the amount of solute is fixed and
hence limited. The result Eq. (4.28) is discussed in Fig. 4.2.

1The Dirac delta function δ(r) is defined by: δ(r) = 0 for r 6= 0 and

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dr δ(r) = 1.
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(a) c(r, t∗)

c∗

0
0 1 2 3 4

t∗ = 0.25T
0

t∗ = 0.5T
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t∗ = T
0

r/L
0

(b) c(r∗, t)
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Figure 4.2: The concentration c(r, t > 0) from Eq. (4.28) in the case of limited point-source
diffusion. The length scale in the radial direction r has been chosen to be L0, which fixes
the time scale to be T0 = L2

0/D. (a) The r dependence of c(r, t∗) for three given times
t∗ = 0.25T0, 0.5T0, and T0. (b) The time dependence of c(r∗, t) for three given radial
positions r∗ = 0, L0, and 2L0.

4.3.2 Limited planar-source diffusion

Another limited diffusion process is limited planar-source diffusion. Let the semi-infinite
half-space x > 0 be filled with some liquid. Consider then an infinitely thin slab covering
the yz plane at x = 0 containing n0 molecules per area that at time t = 0 begin to diffuse
out into the liquid. With a factor 2 inserted to normalize the half-space integration, the
initial condition is

c(r, t = 0) = n0 2δ(x), (4.29)

which results in the solution

c(r, t > 0) =
n0

(πDt)
1
2

exp
(
− x2

4Dt

)
. (4.30)

4.3.3 Constant planar-source diffusion

We end by an example of diffusion with a constant source, i.e., a constant influx of solute is
maintained at one of the boundary surfaces. Consider the same geometry as in the previous
example, but change the boundary condition as follows. At time t = 0 a source filling the
half-space x < 0 suddenly begins to provide an influx of molecules to the boundary plane
x = 0 such that the density there remains constant at all later times,

c(x = 0, y, z, t > 0) = c0. (4.31)

By inspection it is straightforward to show that the solution can be written in terms of
the complementary error function erfc(s),2

c(r, t > 0) = c0 erfc
(

x√
4Dt

)
. (4.32)

2The complementary error function is defined as erfc(s) ≡ 2√
π

∫ ∞

s

e−u2
du.
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(a) c(x, t∗)
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(b) c(x∗, t)
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Figure 4.3: The concentration c(r, t > 0) from Eq. (4.32) in the case of constant planar-
source diffusion. The length scale in the x direction has been chosen to be L0, which fixes
the time scale to be T0 = L2

0/D. (a) The x dependence of c(x, t∗) for three given times
t∗ = 0.1T0, T0, and 10T0. (b) The time dependence of c(x∗, t) for four given positions
x∗ = 0.3L0, L0, 2L0, and 10L0.

4.3.4 Diffusion of momentum and the Navier–Stokes equation

It is not only mass that can diffuse as described above. Another important example is
heat, but also for momentum there exists a diffusion equation. In fact, we have already
through the Navier–Stokes equation worked with diffusion of mechanical momentum with-
out noticing it. That the Navier–Stokes equation contains momentum diffusion becomes
most clear if we consider the case of the decelerating Poiseuille flow discussed in Fig. 3.1
in Section 3.1, where the Navier–Stokes equation becomes very simple,

ρ∂tvx = η ∇2vx. (4.33)

In terms of the momentum density ρvx we indeed obtain a diffusion equation like Eq. (4.23),

∂t(ρvx) = ν ∇2(ρvx), (4.34)

where the kinematic viscosity ν appears as the diffusion constant for momentum,

ν ≡ η

ρ
(≈ 10−6 m2/s for water). (4.35)

In analogy with Eq. (4.24) there exists a momentum diffusion time T0 for diffusion a
characteristic length a, e.g., the radius of the microchannel,

T0 =
a2

ν
(≈ 10 ms for water in a microchannel of radius 100 µm). (4.36)

The dimensionless ratio of the diffusivity ν of momentum relative to the diffusivity D
of mass is denoted the Schmidt number Sc,

Sc = Schmidt number ≡ ν

D
=

η

ρD
. (4.37)

Note that the Schmidt number is an intrinsic property of the solution. This is in contrast
to the Reynolds number which due to its dependence on the velocity is a property of the
flow.
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Figure 4.4: (a) A top-view in the xy plane of a flat (height h) H-filter consisting of
a central channel (length L and width w) with two inlet channels to the left and two
outlet channels to the right. A pure buffer liquid (light gray) and a buffer liquid (gray)
containing big (white) and small (black) solutes are introduced one inlet each, and perform
a pressure driven, steady-state, laminar flow with average velocity v0. (b) Concentration
profiles c(y, t∗) in the central channel as a function of the transverse direction y at different
positions x∗ = v0t

∗ along the channel.

4.4 The H-filter: separating solutes by diffusion

Diffusion is an old, well-known and much used method to separate solutes with different
diffusion constants. The method has also be employed in microfluidics, where the advan-
tages of laminar flow and fast diffusion over small distances can be combined and utilized.
Here we shall briefly study one such example, the so-called H-filter, which was among
some of the first commercial microfluidic products.

The name of the H-filter is derived from its geometrical appearance, see the the xy-
plane top-view in Fig. 4.4(a). The legs of the H are the two inlet channels to the left,
kept at pressure p0 + ∆p, and the two outlet channels to the right, kept at pressure p0.
The cross-bar of the H is the central channel where diffusion takes place. A pure buffer
liquid (light gray) is introduced at one inlet, while another buffer liquid (gray) containing
big (white) and small (black) solutes are introduced in another inlet. All channels are
flat having the same width w and height h ¿ w, the central channel has the length L,
and the two buffer liquids are both taken to be water. Working with length scales in the
micrometer range, say h = 10 µm, w = 100 µm and L = 1 mm, and a flow velocities
below 1 mm/s, the flow is laminar, and the two buffer liquids do not mix, as indicated
by the gray and light gray shading in Fig. 4.4(a). As seen in Fig. 2.8 the average velocity
profile in a flat channel is constant across the width w except within a distance of h/2
from either side-wall. We denote this velocity v0.

Regarding the behavior in the H-filter of a given solute with diffusion constant D in
the buffer, two time scales become relevant, namely the time τconv it takes to be convected
down-stream from the inlet to the outlet, and the time τdiff it takes to diffuse across the
half-width of the channel. They are given by
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τconv =
L

v0

, (4.38a)

τdiff =

(
1
2w

)2

D
=

w2

4D
. (4.38b)

For a solute with τconv ¿ τdiff diffusion does not have time enough to act, and it will
(largely) remain in its original buffer stream leaving the other buffer stream (relatively)
pure, see the white particles in Fig. 4.4(a). For the case τconv & τdiff the solute has time
enough to diffuse across the central channel and the concentration of the solute will be
the same in the two buffer streams, see the black particles in Fig. 4.4(a). Consequently,
operating the H-filter with two solutes in one buffer stream and making sure that they
fulfil τconv,1 ¿ τdiff,1 and τconv,2 & τdiff,2, it is possible to separate out solute 2 from solute
1, although arriving only at half the initial concentration. For a given choice of L, w
and v0 the critical value D∗ of the diffusion constant, where complete mixing by diffusion
happens, can be found by requiring τdiff(D∗) = τconv. This gives

D∗ =
v0w

2

4L
. (4.39)

For L = 1 mm, w = 100 µm and v0 = 1 mm/s we find D∗ = 2.5 × 10−9 m2/s, which
according to Eq. (4.25) is close to the diffusion constant of small ions in water. Thus it is
possible to sperate these from larger molecules using the H-filter.

It is important to realize that the inherent randomness of diffusion processes makes
the separation obtained by the H-filter statistical in nature. One cannot expect to achieve
100% separation, since in the separated outlet stream a fraction α, the impurity fraction, of
the solute concentration will be the unwanted slowly diffusing solute. However, by making
a multistage setup with several H-filters in series, one can in principle come arbitrarily
close to 100% separation of the fast diffusing solute from the slow one, at the prize of
halving the concentration at each stage.

Quantitative estimates of the impurity fraction α can be obtained by solving the dif-
fusion equation 4.23. Here we utilize the laminarity of microfluidics, which ensures that
time is converted into position: the position x down-stream in the central channel is given
by the time t as x = v0t. In a slice across the channel of thickness ∆x near x = 0 there are
N0 = c0wh∆x solute molecules, where c0 is the concentration in the inlet buffer. Since on
average these molecules are convected down-stream by the speed v0 there will be the same
number of molecules in each slice of thickness ∆x, and the consecutive slices x correspond
to consecutive time instants t. Hence we study the evolution of the concentration profile
c(y, t), which is an example of limited source diffusion, where the initial condition is the
half-box profile c(y, 0) = c0, for −w/2 < y < 0, and c(y, 0) = 0, for 0 < y < w/2, which
emerges right at the point x = 0, where the two buffer streams meet. The boundary
condition is zero current at the side-walls, which according to Fick’s law Eq. (4.20) be-
comes ∂yc(±w/2, t) = 0. The solution to this limited source diffusion problem is shown
in Fig. 4.4(b). Note that due to symmetry around the center line y = 0 the concentration
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remains c(0, t) = 1
2c0, and the solution for small times, where the side-walls has not yet

been reached by the diffusing molecules, the solution is identical to the constant planar
source diffusion shown in Fig. 4.3.

4.5 Taylor dispersion; a convection-diffusion example

In the following section we will study an example of combined convection and diffusion,
which occurs if a concentration c(r, t) of some solute is placed in a solution flowing with the
non-zero velocity field v(r, t). The most simple case, which nevertheless turns out to be
complicated, is obtained for the steady-state Poiseuille flow in a cylindrical microchannel,
where v = vx(r) ex. The corresponding convection-diffusion equation (4.21) becomes

∂tc + vx∂xc = D
(
∂ 2

r c + 1

r
∂rc + ∂ 2

x c
)
, (4.40)

where

vx(r) = 2
(
1− r2

a2

)
V0, (4.41)

so that V0 ≡ 1
πa2

∫ a
0 dr 2πr vx(r) is the average velocity of the Poiseuille flow.

In the Taylor dispersion problem, sketched in Fig. 4.5 we consider a homogeneous
band of solute placed in the microchannel at t = 0 and study how this concentration
profile disperses due to convection from the Poiseuille flow and the diffusion due to the
concentration gradients.

If diffusion did not play any role the band of solute would become stretched into an
increasingly longer paraboloid shaped band due to the Poiseuille flow. However, diffusion
is present and it counteracts the stretching: in the front end of the concentration profile
diffusion brings solute particles from the high concentration near the center out towards
the low concentration sides, whereas in the back end it brings solute particles from the
high concentration sides towards the low concentration near the center. As we shall see the
result is quite evenly shaped plug moving down stream with a speed equal to the average
Poiseuille flow velocity V0.

4.5.1 Dimensional analysis and the Péclet number

To get a first insight into the problem we make a dimensional analysis of the convection-
diffusion equation (4.40). The characteristic lengths over which the concentration changes
in the radial and axial direction are denoted a and L0, respectively. In microfluidics the
radial length scale a is the radius or width of the channel, and it is often much smaller
than L0. The characteristic flow velocity is denoted V0, but combining this with either
of the two length scales and the diffusivity D we have four possible choices for the time
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(a) (b) (c)

v v v

Figure 4.5: A sketch of the Taylor dispersion problem in a cylindrical microchannel of
radius a with a stationary Poiseuille flow (horizontal arrow v). (a) The initial flat concen-
tration (dark gray) of the solute. (b) Neglecting diffusion the solute gets stretched out in a
paraboloid shaped plug. (c) With diffusion, indicated by the vertical arrows, the deformed
concentration profile gets evened out.

scale T0:

τ rad
diff =

a2

D
, time to move the distance a by radial diffusion (4.42a)

τax
diff =

L2
0

D
, time to move the distance L0 by axial diffusion (4.42b)

τL
conv =

L0

V0

, time to move the distance L0 by axial convection (4.42c)

τa
conv =

a

V0

, time to move the distance a by axial convection. (4.42d)

It is customary to use T0 = τ
a
conv = a/V0 as the characteristic time scale. With x = L0x̃,

r = ar̃, t = T0t̃, and vx = V0ṽx the dimensionless convection-diffusion equation becomes

V0

a
∂

t̃
c +

V0

L0

ṽx∂x̃c =
D

a2

(
∂ 2

r̃ c + 1

r̃
∂r̃c

)
+

D

L2
0

∂ 2
x̃ c. (4.43)

Introducing the diffusion Péclet number Pe, defined as

Pe ≡ diffusion time
convection time

=
τ rad
diff

τ
a
conv

=
a2

D
a
V0

=
V0 a

D
, (4.44)

the diffusion-convection equation can be written as

Pe ∂
t̃
c + Pe

a

L0

ṽx∂x̃c =
(
∂ 2

r̃ c +
1
r̃

∂r̃c
)

+
a2

L2
0

∂ 2
x̃ c. (4.45)

For high Péclet numbers, where τ
a
conv ¿ τ rad

diff and convection thus happens much faster
than diffusion, the terms on the left-hand side of the convection-diffusion equation domi-
nates, and we are in the convection dominated regime. Conversely, for low Péclet numbers,
where τ rad

diff ¿ τ
a
conv and diffusion happens much faster than convection, the terms on the

right-hand side dominates, and we are in the diffusion dominated regime. Note that due
to the factor a2/L2

0 on the right-hand side the radial diffusion sets in at different time
scales than the axial diffusion. This fact will be exploited in the Taylor dispersion model.
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4.5.2 Taylor’s model for dispersion in microfluidic channels

In Taylor’s model for the dispersion problem sketched in Fig. 4.5, the convection-diffusion
equation is studied in the frame reference moving with average speed V0 of the imposed
Poiseuille flow. Furthermore, we consider the limit of large times t À τ rad

diff , where the
diffusion process has had time to act over the short radial distance a yielding an radially
averaged concentration profile. The concentration profile in the axial direction changes
over the long length scale L0 À a, and the axial diffusion of this profile can be studied
separately. In terms of the characteristic time scales Eq. (4.42) we can formulate the
domain of validity of the model as two inequalities. The central time scale is the radial
diffusion time τ rad

diff , which must be smaller than the long axial convection time τ
L
conv, to

ensure the radial smearing of the concentration profile, ie., τ rad
diff ¿ τ

L
conv. On the other

hand, the short convection time τ
L
conv must be smaller than τ rad

diff to ensure that convection
does play a role, ie., τ

a
conv ¿ τ rad

diff . From this rough argument we have established the
domain of validity of Taylor’s model,

τa
conv ¿ τ rad

diff ¿ τL
conv ⇒ 1 ¿ Pe ¿ L0

a
. (4.46)

As we proceed with the actual solution of the convection-diffusion equation for Taylor’s
model, we shall show that these two inequalities are fulfilled except for some numerical
pre-factors that appear on the way.

As L0 À a in the large-time limit, we see that the axial diffusion term (a2/L2
0)∂

2
x̃ c-term

in Eq. (4.43) can be neglected compared to the radial diffusion term, ∂ 2
r̃ c + (1/r)∂rtic.

As a consequence, the only axial change in concentration follows from convection. It is
therefore natural to make a coordinate transformation to a coordinate system (r, x′) that
moves along with the mean velocity V0 of the paraboloid Poiseuille flow Eq. (4.41),

x′ ≡ x− V0 t, and v′x(r) = vx(r)− V0 =
(
1− 2

r2

a2

)
V0. (4.47)

In the moving coordinate system the convection-diffusion equation without the discarded
axial diffusion becomes

∂tc + V0

(
1− 2

r2

a2

)
∂x′c = D

(
∂ 2

r c + 1

r
∂rc

)
. (4.48)

Moreover, in the time-limit we are working, where radial diffusion dominates, it follows
consistently that in the moving coordinate system the concentration profile is station-
ary and the axial gradient of the concentration is independent of r, i.e., ∂tc = 0 and
∂x̃c = ∂x̃c(x′). The validity of this assumption can always be checked once the solution is
obtained. The problem is thus reduced to

(
1− 2

r2

a2

)
V0 ∂x′c = D

(
∂ 2

r c + 1

r
∂rc

)
, (4.49)

which, as ∂x′c is independent of r, is an ordinary differential equation for c(r) with the
solution

c(r, x′) = c̄(x′) +
a2V0

4D
∂x′c(x

′)
(
− 1

3
+

r2

a2
− 1

2
r4

a4

)
, (4.50)
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where c̄(x′) is the concentration averaged over the cross section at x′. We can easily derive
the condition for having an r-independent axial gradient of c by differentiating Eq. (4.50)
with respect to x′ and demand the second term to be negligible small,

∂x′c = ∂x′ c̄(x
′), if

a2V0

4D

1
L0

¿ 1. (4.51)

The last equality can be expressed in terms of Pe as

Pe ¿ 4
L0

a
. (4.52)

4.5.3 The solution to the Taylor dispersion problem

By calculating the average current density J̄(x′) through the cross section at x′ using
Eqs. (4.47) and (4.50), we can derive Fick’s law for the average concentration c̄(x′) and
read off the effective diffusion coefficient Deff for the resulting 1D diffusion problem,

J̄(x′) =
1

πa2

∫ a

0
dr 2πr ρc(r, x′)v′x(r) = −a2V 2

0

48D
ρ∂x′ c̄ ≡ −Deff ρ∂x′ c̄, (4.53)

where Deff, also known as the Taylor dispersion coefficient, is defined as

Deff ≡
a2V 2

0

48D
. (4.54)

Conservation of mass applied in the moving coordinate system yields

ρ∂tc̄ = −∂x′ J̄ ⇒ ∂tc̄ = Deff ∂ 2
x′ c̄. (4.55)

Using the result Eq. (4.30) for limited planar-source diffusion we can immediately write
down the solution to the Taylor dispersion problem (transformed back to the un-moved
coordinate system)

c̄(x, t) =
n0

(πDefft)
1
2

exp
[
− (x− V0t)

2

4Defft

]
. (4.56)

The result is only valid if molecular diffusion is negligible compared to dispersion,

D ¿ Deff ⇒ D ¿ a2V 2
0

48D
⇒

√
48 ¿ Pe. (4.57)

Combining this with the earlier condition Eq. (4.52) we arrive at the domain of validity
of the solution Eq. (4.56)

√
48 ¿ Pe ¿ 4

L0

a
. (4.58)

This inequality replaces the more rough estimate given in Eq. (4.46).



78 CHAPTER 4. TIME-DEPENDENT PHENOMENA

4.6 Stopping a Poiseuille flow by viscous forces

In Section 2.4.3 we analyzed the steady-state Poiseuille flow in a channel with a circular
cross section. In the following we study in detail what was already alluded to in Fig. 3.1,
namely how such a flow decays and stops, when the pressure drop suddenly vanishes. We
consider a finite section of length L of the infinite channel, and we assume that for time
t < 0 a steady-state Poiseuille flow was present driven by the pressure drop p(0) = p0 +∆p
and p(L) = p0. Then suddenly at t = 0 the overpressure ∆p is suddenly removed such
that for t > 0 the pressure is given by p(0) = p(L) = p0. In reality, the new pressure is
not established instantly, but it is set up with the speed of sound in the liquid, typically
of the order 103 m/s. However, this is much faster than the velocities obtained by the
liquid, so it is a good approximation to assume that the new pressure is set up instantly in
accordance with the usual assumption of incompressibility of the liquid. In the following
we calculate how the velocity field of the liquid evolves in time for t > 0.

Due to the cylindrical symmetry the non-linear term ρ(v ·∇)v in the Navier-Stokes
equation remains zero, but in contrast to the steady-state version Eq. (2.32) we must now
keep the explicit time-derivative. Since ∆p = 0 we arrive at

ρ ∂tvx(r, t)− η
[
∂ 2

r +
1
r

∂r

]
vx(r, t) = 0. (4.59)

The boundary and initial conditions for vx(r, t) are

vx(a, t) = 0, ∂rvx(0, t) = 0, vx(r, 0) =
∆p

4ηL

(
a2 − r2

)
, vx(r,∞) = 0, (4.60)

where we have utilized that starting from the steady-state solution Eq. (2.33a) the liquid
ends at rest. Note that the azimuthal angle φ does not enter the problem.

The disappearance of the non-linear term and the appearance of a zero right-hand
side makes Eq. (4.59) a homogeneous linear differential equation. To proceed, we do not
set out to find the solution vx(r, t) directly, but instead we seek some simpler solutions
un(r, t), which can be used in a Fourier-like expansion

vx(r, t) =
∑
n

c̃n un(r, t), (4.61)

where c̃n are some expansion coefficients. One particular class of solutions un(r, t) to
Eq. (4.59) can be found by separation of the variables using the following trial solution,

un(r, t) ≡ Tn(t) ũn(r). (4.62)

Inserting this into Eq. (4.59) and dividing by Tn(t) ũn(r) yields
1

Tn(t)
∂tTn(t) =

ν

ũn(r)

[
∂ 2

r +
1
r

∂r

]
ũn(r). (4.63)

The t-dependent left-hand side can only equal the r-dependent right-hand side if the two
sides equal the same constant −λn. Thus we arrive at

∂tTn(t) = −λn Tn(t), (4.64a)
[
∂ 2

r +
1
r

∂r

]
ũn(r) = −λn

ν
ũn(r). (4.64b)
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The solutions to these standard differential equations are

Tn(t) = exp
(− λnt

)
, (4.65a)

ũn(r) = c̃(0)
n J0

(√
λn

ν
r
)

+ c̃(1)
n Y0

(√
λn

ν
r
)
, (4.65b)

where c̃
(0)
n and c̃

(1)
n are constants, and where J0 and Y0 are Bessel functions of the first

and second kind, respectively, both of order zero.3

To narrow down the possible solutions we use three of the four boundary conditions
Eq. (4.60). From vx(r,∞) = 0 follows Tn(∞) = 0 and thus λn > 0. From ∂rvx(0, t) = 0
follows ∂rũn(0) = 0, so the Bessel function Y0(r), which diverges for r → 0, must be
excluded and thus c̃

(1)
n = 0. From vx(a, t) = 0 follows that ũn(a) = 0 and thus
√

λn

ν
a = γn, where J0(γn) ≡ 0, n = 1, 2, 3, . . . (4.66)

Here we have introduced the countable number of roots γn of the Bessel function J0.
4

This provides us with a complete set of basis functions which can be used to express any
solution of Eq. (4.59) in the form of a Fourier-Bessel series

vx(r, t) =
∞∑

n=1

c̃(0)
n J0

(
γn

r

a

)
exp

(
− γ2

n
ν

a2
t
)
. (4.67)

The unknown coefficients c̃
(0)
n are determined by the third boundary condition in Eq. (4.60)

for u(r, 0),

u(r, 0) =
∞∑

n=1

c̃(0)
n J0

(
γn

r

a

)
≡ ∆p

4ηL

(
a2 − r2

)
. (4.68)

Introducing the dimensionless coordinate ρ = r/a, multiplying Eq. (4.68) by ρJ0

(
γm ρ

)
,

integrating over ρ, and using the orthogonality relation
∫ 1

0
dρ ρ J0

(
γm ρ

)
J0

(
γn ρ

)
= 1

2

[
J1(γm)

]2
δmn (4.69)

for the Bessel functions J0

(
γn ρ

)
, we can calculate coefficient c̃

(0)
m ,

c̃(0)
m =

a2∆p

2ηL

1[
J1(γm)

]2

∫ 1

0
dρ

(
ρ− ρ3

)
J0

(
γm ρ

)
=

2a2∆p

ηL

1
γ3

m J1(γm)
. (4.70)

Note that the Bessel function J1 of order 1 now appears.5

3The solution Eq. (4.65b) is the cylindrical coordinate analog of the Cartesian case:

∂ 2
x ũn(x) = −λn

ν
ũn(x) ⇒ ũn(x) = c̃(0)

n sin

(√
λn

ν
x

)
+ c̃(1)

n cos

(√
λn

ν
x

)
.

4The first four roots of J0(γi) = 0 are γ1 = 2.405, γ2 = 5.520, γ3 = 8.654, and γ4 = 11.792.
5The integral in Eq. (4.70) is calculated by using

∫
dx xJ0(x) = xJ1(x) and the recursive formula∫

dx xkJ0(x) = xkJ1(x) + (k − 1)xk−1J0(x)− (k − 1)2
∫

dx xk−2J0(x).
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Figure 4.6: The evolution in time of the velocity profile vx(r, t) in a cylindrical channel
with radius a for a decelerating Poiseuille flow due to the abrupt disappearance of the
driving pressure ∆p at t = 0. The time is expressed in units of the momentum diffusion
time T0 = a2/ν. The velocity profile is shown at seven different times t∗ spanning from
the paraboloid velocity profile at t∗ = 0 to the zero-velocity field at t∗ = ∞.

The final result for the velocity field vx(r, t) of a starting Poiseuille flow can now be
obtained by combining Eqs. (4.67) and (4.70),

vx(r, t) =
a2∆p

4ηL

∞∑

n=1

8
γ3

n J1(γn)
J0

(
γn

r

a

)
exp

(
− γ2

n
ν

a2
t
)
. (4.71)

The velocity profile at different times during the evolution of the full Poiseuille flow
paraboloid is shown in Fig. 4.6. Note that the time scale tacc characteristic for the deceler-
ation basically is the momentum diffusion time T0 = a2/ν, but more accurately it is deter-
mined by the exponential factor containing the smallest Bessel function root γ1 = 2.405.
In the case of a water in a typical microfluidic channel with radius a = 100 µm we get

tacc =
1
γ2

1

a2

ν
=

1
γ2
1

T0 ≈ 2× 10−3 s. (4.72)

4.7 Accelerated motion of a spherical body in a liquid

As mentioned in Section 2.6 many applications of lab-on-a-chip systems involves the mo-
tion of small objects, such as magnetic beads, fluorescent markers, or biological cells, inside
the microfluidic channels. In the following we study two aspects beyond steady-state mo-
tion of spherical bodies, namely simple acceleration and Brownian motion. As before we
restrict our analysis to rigid bodies.

4.7.1 A spherical body approaching steady-state in a liquid

We begin by a studying the acceleration of a sphere with radius a and mass (4π/3)a3ρsph as
it approaches steady-state in a fluid. Initially, both the sphere and the fluid is at complete
rest. Suddenly, at time t = 0 a constant external force Fext ex begins to act on the sphere.
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As the force is constant all motion in the following takes place along the direction given
by ex, and the resulting velocity of the sphere is denoted u(t) = u(t) ex. The equation of
motion for the sphere becomes

4

3
πa3ρsph∂tu = −6πηa u + Fext. (4.73)

The solution to this standard differential equation is

u(t) =
Fext

6πηa
− u0 exp

(
− 9η

2ρspha
2

t
)
, (4.74)

where u0 is an integration constant that needs to be specified by the boundary conditions.
If the sphere is at rest for t = 0 then

u(t) =
Fext

6πηa

[
1− exp

(
− 9η

2ρspha
2

t
)]

. (4.75)

The characteristic time scale in the exponential is seen to be very small for a mi-
crosystem. For a cell we can take the density to be that of water while a = 5 µm. This
yields

2ρspha
2

9η
≈ 5 µs. (4.76)

Thus in a viscous environment inertial forces are indeed negligible, and for the case of the
microsphere it is reasonable to assume that it is always moving in local steady-state.

4.7.2 A diffusing spherical body and the Einstein relation

Another accelerated motion of a sphere is the random diffusion or Brownian motion. Here,
we shall derive the very useful Einstein relation, which gives the diffusion constant D of
the Brownian motion in terms of the parameters of the liquid and the sphere.

A sphere of radius a moving with velocity v through a liquid of viscosity η experience
the Stokes drag force Fdrag. Consider a position-dependent solution of density ρ(r) of
spherical molecules in the same liquid. Due to gradients in the density these molecules
will diffuse according to Fick’s law, J = −D ∇ρ. Since the chemical potential µ by
definition is the free energy of the last added molecule, the force Fdiff driving the diffusion
is given by minus the gradient µ,

Fdiff = −∇µ. (4.77)

In steady state the forces from diffusion and drag exactly balance each other. Com-
bining this force balance with Fick’s law and the thermodynamic relation µ(T, ρ) =
µ0 + kBT ln(ρ/ρ0), where the subscript 0 refer to some constant standard concentration,
we arrive at the Einstein relation,

D =
kBT

6πaη
. (4.78)

It is useful to note that at room temperature

kBT = 1.3805× 10−23J/K× 300 K = 4.14× 1021 J. (4.79)
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4.8 Exercises

Exercise 4.1
Constant-step random walk in 1D
Consider the random walk in 1D defined in Section 4.1 with constant step-size ∆xi = ±`.

(a) List all possible end-positions xN for random walks with N = 4 steps, and note in
how many ways each can be reached.

(b) Argue why the constant-step random walk with N steps can be described as a
binomial distribution, and use this fact to as an alternative way to calculate 〈xN 〉 and
〈x2

N 〉.

Exercise 4.2
Constant-step, continuous-direction random walk in 2D and 3D
Consider a random walk in 2D like RN of Eq. (4.10), but now allow for a step ∆ri of
length ` in any direction, ∆ri = ` cos θi ex + ` sin θi ey, given by the angle θi.

(a) Calculate the diffusion length `2D
diff in this model.

(b) Extend the model to 3D and calculate the corresponding diffusion length `3D
diff .

Exercise 4.3
The convection-diffusion equation
Verify that Eqs. (4.14) and (4.18) indeed lead to Eq. (4.19).

Exercise 4.4
Solutions to the diffusion equation
Study the various analytic solutions to the diffusion equation presented in Section 4.3 and
prove that the solutions Eqs. (4.28), (4.30), and (4.32) indeed are solutions to the diffusion
equation given the respective initial conditions Eqs. (4.27), (4.29), and (4.31).

Exercise 4.5
The Einstein relation linking diffusion to viscosity
Consider the Einstein relation Eq. (4.78) for the diffusion constant of a sphere.

(a) Estimate the diffusion constant D in water at room temperature for a rigid sphere
with the same radius as a typical small ion. Comment the result.

(b) Fluorescent latex spheres used for bio-detection in lab-on-chip systems have typ-
ically a radius a = 0.5 µm. Estimate how long time τdiff it takes such a sphere to diffuse
across a 100 µm wide water-filled microchannel at room temperature.

Exercise 4.6
Thermally induced jump rates for molecules in water
Locally, within a few atomic distances around a given H2O molecule in water there is
spatial order. The molecule is thus lying in the potential minimum created by the sur-
rounding molecules. The molecule of mass M executes small harmonic oscillations of
angular frequency ω = 2πf . To jump to a neighboring site, a water molecule needs to
overcome the potential barrier of height ∆E. It attempts to jump with the harmonic
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oscillator frequency f , but each attempt is only successful with the thermal probability
factor exp(−∆E/kBT ).

The frequency of the harmonic oscillations can be estimated as follows. Write the
potential as V (x) = 1

2Kx2. The maximum of the barrier occurs at x = 1
2 d, so it is

reasonable to put V (1
4 d) = 1

2 ∆E. Using this, show that the rate Γ for successful jumps is

Γ =
2
πd

√
∆E

M
e−∆E/kBT . (4.80)

Exercise 4.7
The current density from thermally induced molecular jumping
Let the thickness of one molecular layer be denoted d.

(a) Argue that the particle current density in the x direction from a given layer situated
at the plane x = 0 is Jx(0) = ρ(0)d Γ.

(b) Write a similar expression for the particle current density coming from the layer
at x = d going back to the first layer. Argue that the total current density is given by
J tot

x = Jx(0)− Jx(d) ≈ −∂xρ d2Γ.
(c) Show that this result gives the diffusion constant D = d2Γ.

Exercise 4.8
A theoretical expression for the viscosity
Combine the results of the previous exercises and obtain the following expression for η:

η =
kBT

12ad

√
M

∆E
e∆E/kBT . (4.81)

Compare this result with the experimental values for water given in Section B.1. Use
the following parameter values: a = 0.1 nm, d = 0.4 nm, and M you figure out yourself.
The value for ∆E we estimate from the specific vaporization energy of water, Evap/M =
2.26 × 106 J/kg (i.e. the latent heat for producing steam from boiling water at 100 ◦C):
∆E ≈ 1

2
1
2 Evap. One factor 1

2 is because the barrier height is roughly half the binding
energy, and the other because on average there are two hydrogen bonds per molecule.

Exercise 4.9
Starting a Poiseuille flow in a circular channel
Consider the setup given in Section 4.6 for the decelerating Poiseuille flow in a circular
channel, but invert the problem, so that the starting point is a liquid at complete rest for
t < 0 and no pressure drop, p(0) = p(L) = p0. Then suddenly at t = 0 a constant pressure
drop is applied such that p(0) = p0 + ∆p and p(L) = p0 for t > 0. Determine the velocity
field ux(r, t) for the accelerating Poiseuille flow.

Exercise 4.10
Starting a Poiseuille flow in a parallel-plate channel
Redo the previous exercise but change the cross-section of the channel from circular to
that of an infinite parallel-plate channel of height h.
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4.9 Solutions

Solution 4.1
Constant-step random walk in 1D
For each step in the constant step-size random walk in 1D there are two possibilities, so
N steps result in 2N paths. Any path has P positive steps +`, where 0 ≤ P ≤ N , and
N − P negative steps −`, so the paths can end at xN/` = P − (N − P ) = 2P −N .

(a) For N = 4 steps there are 24 = 16 paths ending at x4/` = −4,−2, 0, 2, 4. The
extreme points can each be reach in only one way: either all steps are negative or all are
positive. The point x4/` = 2 is reached after 3 positive and 1 negative step. There are
four ways to place the negative step in the sequence, so the end point can be reached by
four different paths. Similarly, there are four paths leading to x4/` = −2. Now we have
accounted for 10 of the 16 paths, which leaves six paths to end at x4/` = 0.

(b) A N -step random walk consists of N consecutive and uncorrelated binary choices,
+` or −`. Let us consider +` as the successful outcome occurring with probability
p = 1

2 . This is the very definition of a binomial process with the distribution f(P ) =

CN,P

(
1
2

)N(
1− 1

2

)(N−P ) = 1
2N CN,P for successful outcome. here CN,P = N !/[P !(N − P )!]

is the binomial coefficient. Well known results are 〈P 〉 = Np = 1
2N and 〈(P − 〈P 〉)2〉 =

Np(1− p) = 1
4N . As xN/` = 2P −N we obtain directly 〈xN 〉 = 0 and 〈x2

N 〉 = N`2.

Solution 4.2
Constant-step, continuous-direction random walk in 2D and 3D
The ith step as ∆ri = `ei, where ei is a unit vector pointing in an arbitrary direction.

(a) 〈RN 〉 = 〈∑N
i ei〉 = `

∑N
i 〈ei〉 = 0, as the unit vectors have random directions.

Hence the diffusion length in this model is given by
(
`2D
diff

)2 = 〈R2
N 〉 = `2〈∑N

i ei·
∑N

j ej〉 =
`2

∑N
i,j〈ei ·ej〉 = `2

∑N
i 〈ei ·ei〉 = N`2. All the off-diagonal scalar-products average to zero

due to the random direction of the unit vectors.
(b) We did not use the dimension in the previous argument, so the diffusion length in

3D is the same for the given model, `3D
diff =

√
N`.

Solution 4.3
The convection-diffusion equation
We keep the total mass current density ρv together as a unit, thus separating it from the
solute concentration cα. Carrying out the differentiation in Eq. (4.18) we get

ρ∂tcα + cα∂tρ = −(ρv)·∇cα − cα∇·(ρv)−∇·Jdiff
α . (4.82)

By using Eq. (4.14) cα∂tρ cancels −cα∇·(ρv), and we arrive at Eq. (4.19).

Solution 4.4
Solutions to the diffusion equation
To simplify the calculations below we note that for a function of the form f(x) = Axα we
can write its derivative as ∂xf = α

x f .
(a) Limited point-source diffusion. In spherical polar coordinates, see Section A.3,

we have without angular dependence that ∇2c = ∂ 2
r c + 2

r∂rc. From Eq. (4.28) we find
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∂rc = − r
2Dtc, and thus ∂ 2

r c =
( − 1

2Dt + r2

4D2t2

)
c, as well as ∂tc =

( − 3
2

1
t + r2

4Dt2

)
c.

Hence ∂tc = D
(
∂ 2

r + 2
r∂r

)
c. The initial condition Eq. (4.27) is fulfilled if c(r 6= 0, 0) = 0

and
∫

dr c(r, 0) = N0. Now, for r 6= 0 Eq. (4.28) gives c(r, t) → 0 exponentially fast
for t → 0, while for any t we have

∫
dr c(r, 0) = N0(4πDt)−

3
2

∫∞
0 dr 4πr2 exp

( − r2

4Dt

)
=

N0
4√
π

∫∞
0 du u2e−u2

= N0
4√
π
Γ
(

3
2

)
= N0.

(b) Limited planar-source diffusion. From Eq. (4.30) we find ∂xc = − x
2Dtc, and thus

∂ 2
x c =

( − 1
2Dt + x2

4D2t2

)
c, as well as ∂tc =

( − 1
2

1
t + x2

4Dt2

)
c. Hence ∂tc = D∂ 2

x c. The
initial condition Eq. (4.29) is fulfilled if c(x > 0, 0) = 0 and

∫∞
0 dx c(x, 0) = n0. Now, for

x > 0 Eq. (4.30) gives c(x, t) → 0 exponentially fast for t → 0, while for any t we have∫∞
0 dx c(x, 0) = n0(πDt)−

1
2

∫∞
0 dx exp

(− x2

4Dt

)
= n0

2√
π

∫∞
0 du e−u2

= n0
2√
π
Γ
(

1
2

)
= n0.

(c) Constant planar-source diffusion. From Eq. (4.32) and the associated footnote for
erfc(s) we find ∂xc = −c0

1√
πD

t−
1
2 exp

(− x2

4Dt

)
, and thus ∂ 2

x c = c0
1√
πD

x
2D t−

3
2 exp

(− x2

4Dt

)
,

as well as ∂tc = c0
x

2
√

πD
t−

3
2 exp

( − x2

4Dt

)
. Hence ∂tc = D∂ 2

x c. The boundary condition

Eq. (4.31) is fulfilled by Eq. (4.32) since c(0, t) = c0
2√
π

∫∞
0 du e−u2

= c0
2√
π
Γ
(

1
2

)
= c0.

Solution 4.5
The Einstein relation linking diffusion to viscosity
We use kBT = 4.14× 10−21 J and η = 10−3 Pa s in the Einstein relation (4.78).

(a) For a hydrated ion we take the radius a = 0.1 nm and arrive at D = 2.2×10−9m2/s.
According to Eq. (4.25a) this is very close to the experimental value.

(b) Taking a = 0.5 µm we find D = 4.4× 10−13m2/s. With this diffusion constant the
time it takes to diffuse L = 100 µm is τdiff =

√
L2/D = 2.3× 104 s = 6.3 h.

Solution 4.6
Thermally induced jump rates for molecules in water
The rate for successful jumps is the product of the attempt rate f with the probability
of success exp(−∆E/kBT ), i.e., Γ = f exp(−∆E/kBT ). So we just need to determine f ,
which is given by the oscillation frequency f = 1

2πω = 1
2π

√
K/M , where K is the force

constant of the harmonic potential in which the molecule of mass M is moving. From the
energy estimate we have 1

2∆E = V
(

1
2d

)
= 1

2K(1
4d

)2, which leads to K = 16∆E
d2 and thus

f = 2
πd

√
∆E
M . Consequently Γ = 2

πd

√
∆E
M exp(−∆E/kBT ).

Solution 4.7
The current density from thermally induced molecular jumping
The surface density of molecules in one molecular layer of thickness d is ρd.

(a) The jumping rate Γ gives an estimate of how often a molecule jumps to one side,
and consequently the current density is Jx = ρd Γ.

(b) The total molecular current density in a plane between two neighboring molecular
layers is given by the difference of the current densities coming from the two sides, i.e.,
J tot

x = Jx(0)− Jx(d) = [ρ(0)− ρ(d)] d Γ = −1
d [ρ(d)− ρ(0)] d2Γ ≈ −∂xρ d2Γ.

(c) Applying Fick’s law, Jx = −D∂xρ, to the previous result gives D = d2Γ.
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Solution 4.8
A theoretical expression for the viscosity
The Einstein relation and the previous analysis of the diffusion constant yields

η =
kBT

6πDa
=

kBT

6πd2Γa
=

kBT

6πd2Γa
=

kBT

12ad

√
M

∆E
e∆E/kBT . (4.83)

Inserting into this expression the parameters listed in the exercise as well as the mass of
a water molecule, M = 18× 1.67× 10−27 kg yields η = 0.7 mPa s at room temperature.

Solution 4.9
Starting a Poiseuille flow in a circular channel
The Navier–Stokes equation becomes a inhomogeneous, linear partial differential equation

ρ ∂tux(r, t)− η
[
∂ 2

r +
1
r

∂r

]
ux(r, t) =

∆p

L
. (4.84)

A particular solution to this equation fulfilling the no-slip boundary conditions is of
course the well-known steady-state solution, u∞(r) = ∆p

4ηL

(
a2 − r2

)
. Moreover, vx(r, t)

of Eq. (4.71) is a solution of the corresponding homogeneous equation, Eq. (4.59), with
the initial condition vx(r, 0) = u∞(r). Therefore, ux(r, t) = u∞ − vx(r, t) is a solution
to our problem Eq. (4.84) with the appropriate boundary/initial conditions ux(a, t) = 0,
∂rux(0, t) = 0, ux(r, 0) = 0, and ux(r,∞) = u∞. The explicit expression for ux(r, t) is

ux(r, t) =
a2∆p

4ηL

[
1− r2

a2
−

∞∑

n=1

8
γ3

n J1(γn)
J0

(
γn

r

a

)
exp

(
− γ2

n
ν

a2
t
)]

. (4.85)

In the figure below are shown the time-evolution of the velocity profile from rest to the
fully developed paraboloid flow.
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Figure 4.7: The evolution in time of the velocity profile ux(z, t) in a circular channel
with radius a for a Poiseuille flow under acceleration due to the abrupt appearance of the
driving pressure ∆p at t = 0. The time is expressed in units of the momentum diffusion
time T0 = a2/ν. The velocity profile is shown at seven different times t∗ spanning from
the zero-velocity profile at t∗ = 0 to the fully developed paraboloid shape at t∗ = ∞.
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Solution 4.10
Starting Poiseuille flow in a parallel-plate channel
The analysis of the time evolution of a Poiseuille flow for an infinite parallel-plate channel
begins with the Navier–Stokes equation analogous to Eq. (4.84),

ρ ∂tux(z, t)− η ∂ 2
z vx(z, t) =

∆p

L
. (4.86)

The boundary conditions for ux(z, t) are

ux(h, t) = 0, ux(0, t) = 0, ux(z, 0) = 0, ux(z,∞) =
∆p

2ηL

(
h− z

)
z, (4.87)

where we have utilized that the steady-state solution Eq. (2.52) will be reached in the
limit t →∞. In analogy with the previous exercise the full solution ux(z, t) can therefore
be written as a sum

ux(z, t) ≡ ux(z,∞)− vx(z, t) (4.88)

of the particular solution ux(z,∞) and a general solution vx(z, t) to the corresponding
homogeneous equation. When inserting Eq. (4.88) into Eq. (4.86) we obtain the homoge-
neous differential equation which vx(z, t) has to satisfy, compare with Eq. (4.59),

∂tvx(z, t)− ν ∂ 2
z vx(z, t) = 0, (4.89)

with ν = η/ρ. The boundary conditions for vx(z, t) follow from Eqs. (4.87) and (4.88),

vx(h, t) = 0, vx(0, t) = 0, vx(z, 0) =
∆p

2ηL

(
h− z

)
z, vx(z,∞) = 0. (4.90)

To proceed, we do not set out to find the solution vx(z, t) directly, but instead we seek
some simpler solutions un(z, t), which can be used in a Fourier-like expansion

vx(z, t) =
∑

n

c̃n un(z, t), (4.91)

where c̃n are some expansion coefficients. One particular class of solutions un(z, t) to
Eq. (4.89) can be found by separation of the variables using the following trial solution,

un(z, t) ≡ Tn(t) ũn(z). (4.92)

Inserting this into Eq. (4.89) and dividing by Tn(t) ũn(z) yields

1
Tn(t)

∂tTn(t) =
ν

ũn(z)
∂ 2

z ũn(z). (4.93)

The t-dependent left-hand side can only equal the z-dependent right-hand side if the two
sides equal the same constant −λn. Thus we arrive at

∂tTn(t) = −λn Tn(t), (4.94a)

∂ 2
z ũn(z) = −λn

ν
ũn(z). (4.94b)
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The solutions to these standard differential equations are

Tn(t) = exp
(− λnt

)
, (4.95a)

ũn(z) = c̃(0)
n sin

(√
λn

ν
z
)

+ c̃(1)
n cos

(√
λn

ν
z
)

(4.95b)

where c̃
(0)
n and c̃

(1)
n are constants.

To narrow down the possible solutions we use three of the four boundary conditions
Eq. (4.90). From vx(z,∞) = 0 follows Tn(∞) = 0 and thus λn > 0. The sine-term is
identical zero for z = 0, so no-slip vx(0, t) = 0 at z = 0 can only be maintained if the
cosine-term is excluded by putting c̃

(1)
n = 0. Further, no-slip at z = h imposes the following

constraint on the argument of the sine-term,
√

λn

ν
h = nπ, n = 1, 2, 3, . . . (4.96)

Here nπ is the countable number of roots of the sine function. This provides us with a
complete set of basis functions which can be used to express any solution of Eq. (4.89) in
the form of a Fourier-sine series

vx(z, t) =
∞∑

n=1

c̃(0)
n sin

(
nπ

z

h

)
exp

(
− n2π2 ν

h2
t
)
. (4.97)

The unknown coefficients c̃
(0)
n are determined by the third boundary condition in Eq. (4.90)

for vx(z, 0),

vx(z, 0) =
∞∑

n=1

c̃(0)
n sin

(
nπ

z

h

)
≡ ∆p

2ηL

(
h− z

)
z. (4.98)

Introducing the dimensionless coordinate ζ = z/h, multiplying Eq. (4.98) by sin
(
mπ ζ

)
,

integrating over ζ, and using the orthogonality relation
∫ 1

0
dζ sin

(
mπ ζ

)
sin

(
nπ ζ

)
= 1

2
δmn (4.99)

for the sine functions sin(nπζ), we can calculate coefficient c̃
(0)
m ,

c̃(0)
m =

h2∆p

ηL

∫ 1

0
dζ

(
ζ − ζ2

)
sin

(
mπ ζ

)
=

4h2∆p

ηL

1
(mπ)3

, m odd, 0 otherwise. (4.100)

Note that only odd values of m yield non-zero contributions.6

The final result for the velocity field ux(z, t) of a starting Poiseuille flow can now be
obtained by combining Eqs. (4.88), (4.97), and (4.100),

ux(z, t) =
h2∆p

2ηL

[(
1− z

h

) z

h
−

∞∑

n,odd

8
(nπ)3

sin
(
nπ

z

h

)
exp

(
− n2π2 ν

h2
t
)]

. (4.101)

The velocity profile at different times during the evolution of the full parabolic Poiseuille
flow is shown in Fig. 4.8.

6The integral in Eq. (4.100) is calculated by using
∫

dx x sin x = sin x− x cos x
and

∫
dx x2 sin x = 2x sin x +

(
2− x2

)
cos x.
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Figure 4.8: The evolution in time of the velocity profile ux(z, t) in a infinite parallel-plate
channel with height h for a Poiseuille flow under acceleration due to the abrupt appearance
of the driving pressure ∆p at t = 0. The time is expressed in units of the momentum
diffusion time T0 = h2/ν. The velocity profile is shown at seven different times t∗ spanning
from the zero-velocity profile at t∗ = 0, through t∗/T0 = 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, and
0.4 to the fully developed parabolic shape at t∗ = ∞. To the right is shown the relative
difference between the full parabolic velocity field ux(z,∞), taking into account only the
terms in Eq. (4.97) with n < 50, and vx(z, 0) = ∆p

2ηL

(
h− z

)
z.
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Chapter 5

Capillary effects

One of the characteristic features of microfluidics is the dominance of surface effects due
to the large surface to bulk ratio on the micrometer scale. A prominent class of surface
effects are known as capillary effects, named so after the latin word capillus for hair, since,
as we shall see, they are particularly strong in microchannels having bore diameters equal
to or less than the width of a human hair, which is about 50 µm.

The capillary effects can be understood by studying Gibbs free energy G, the energy of
systems where the thermodynamic control parameters are pressure p, temperature T , and
particle number N . In particular we shall be interested in equilibrium or quasi-equilibrium
situations, where the Gibbs free energy per definition is at a minimum. As an example,
let the system under consideration consist of two sub-systems divided by a free surface
at equilibrium. The total Gibbs energy G of the system is then given as a sum of several
energy contributions Gi such as the free energy of each of the two sub-systems and the
free energy of the surface. Let the free surface of the system be given in terms of some
variable ξ such as position, volume, or geometrical shape, and let the equilibrium value
be given by ξ = ξ0. Variations ξ = ξ0 + δξ away from the equilibrium value ξ0 must result
in a vanishing variation δG of the free energy, because if G could vary, the system would
spontaneously change ξ0 to obtain a lower free energy contradicting the assumption that
ξ0 is the equilibrium value. This can be formulated mathematically as

δG = ∂ξG δξ =
(∑

i

∂ξGi

)
δξ = 0. (5.1)

This expression will be used in the following to establish the governing equations for
capillary effects.

5.1 Surface tension

A central concept in the theory of surfaces is the surface tension. The surface tension
depends on the two materials on each side of the surface, and whether they are solids,
fluids, or gases.

91
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(a) (b)

gas

liquid

gas

liquid

Figure 5.1: The origin of surface tension for a liquid-gas interface. (a) A molecule in
the bulk of the liquid forms chemical bonds (arrows) with the neighboring molecules
surrounding it. (b) A molecule at the surface of the liquid misses the chemical bonds in
the direction of the surface (dashed lines). Consequently, the energy of surface molecules
is higher than that of bulk molecules, and the formation of such an interface costs energy.

5.1.1 Definition of surface tension

The surface tension γ of an interface1 is defined as the Gibbs free energy per area for fixed
pressure and temperature,

γ ≡
(

∂G
∂A

)

p,T

. (5.2)

The SI-unit of γ is therefore
[
γ
]

= J m−2 = N m−1 = Pa m. (5.3)

A microscopic model for surface tension between a liquid and a gas is sketched in
Fig. 5.1. A molecule in the bulk forms chemical bonds with the neighboring thus gaining
a certain amount of binding energy. A molecule at the surface cannot form as many bonds
since there are almost no molecules in the gas. This lack of chemical bonds results in
a higher energy for the surface molecules. This is exactly the surface tension: it costs
energy to form a surface. Using this model it is easy to estimate the order of magnitude of
surface tension for a liquid-gas interface. A molecule in the bulk has roughly six nearest
neighbors (think of a cubic geometry). A surface molecule has only five missing the one
above it in the gas. The area covered by a single molecule is roughly A ≈ (0.3 nm)2, see
Fig. 1.2, while a typical inter-molecular bond ∆E in a liquid is of the order a couple of
thermal energies, ∆E ≈ 2kBT ≈ 50 meV. This yields

γ ≈ 2kBT

A =
50 meV

(0.3 nm)2
= 90 mJ m−2. (5.4)

The measured value for the water-air interface at 20◦C is 70 mJ/m2, see Table 5.1.
Surface tension can also be interpreted as a force per length having the unit N/m =

J/m2. This can be seen by considering a flat rectangular surface of length L and width

1In the literature surface tension is normally denoted γ or σ. To avoid confusion with the stress tensor,
γ will be used throughout these notes.
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Figure 5.2: (a) The displacement by the amount δz of a small section of a curved surface
with area A = δx δy. The local radii of curvature changes from Ri to Ri + δz = (1 +
δz/Ri)Ri, i = 1, 2 thus changing the area from A to (1+δz/R1)(1+δz/R2)A. (b) A sketch
of a soap film suspended by two circular frames with open ends. The pressure inside and
outside are equal, so ∆psurf = 0 implying 1/R1 + 1/R2 = 0. Here the radius of curvature
is positive in the azimuthal direction and negative in the axial direction.

w. If we keep the width constant while stretching the surface the amount ∆L from L
to L + ∆L, an external force F must act to supply the work ∆G = F∆L necessary for
creating the new surface area w∆L containing the energy ∆G = γw∆L,

F

w
=

1
w

∆G
∆L

=
1
w

γ w∆L

∆L
= γ. (5.5)

5.1.2 The Young–Laplace pressure across curved interfaces

An important consequence of a non-zero surface tension is the presence of the so-called
Young–Laplace pressure drop ∆psurf across a curved interface in thermodynamical equilib-
rium. The expression for ∆psurf is derived using the energy minimum condition Eq. (5.1).

Consider a small piece of the curved surface with the area A = δx δy in equilibrium as
sketched in Fig. 5.2(a). We now study the consequences of expanding the area through a
small displacement δz in the direction parallel to the local normal-vector of the surface.
The two local radii of curvature in the x and the y direction thus changes from Ri to
Ri + δz = (1 + δz/Ri)Ri, i = 1, 2. The side lengths δx and δy are changed similarly,
leading to a change in area form A to (1+δz/R1)(1+ δz/R2)A. Neglecting terms of order
(δz)2 the area has therefore been enlarged by the amount δA given by

δA ≈
(

δz

R1

+
δz

R2

)
A. (5.6)

If we disregard any influence of gravity there will only be two contributions to the
change δG of the free energy of the system: an increase in surface energy Gsurf due to
an increased area, and a decrease in pressure-volume energy GpV due to the increase in
volume. In this case Eq. (5.1) becomes

δG = δGsurf + δGpV = γ δA− [A δz
]
∆psurf = 0. (5.7)
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liquid γ [mJ/m2] liquid solid θ

water 72.9 water SiO2 52.3◦

mercury 486.5 water glass 25.0◦

benzene 28.9 water Au 0.0◦

methanol 22.5 water Pt 40.0◦

blood ∼60.0 water PMMA 73.7◦

mercury glass 140.0◦

Table 5.1: Measured values of the surface tension γ at liquid-vapor interfaces and of the
contact angle θ at liquid-solid-air contact lines. All values are at 20 ◦C.

Inserting Eq. (5.6) in this expression and isolating the pressure drop yields the Young–
Laplace equation

∆psurf =
( 1

R1

+
1

R2

)
γ. (5.8)

It is important to note the sign convention used here: the pressure is highest in the
convex medium, i.e., the medium where the centers of the curvature circles are placed. An
example illustrating more complex signs of the curvatures is shown in Fig. 5.2(b), where
a thin soap film supported by two co-axial, circular frames with open ends is analyzed.
The open ends result in equal pressures inside and outside, whence the Young–Laplace
pressure drop is zero, ∆psurf = 0, which by Eq. (5.8) implies a vanishing mean curvature,
1/R1 + 1/R2. The solution is a film with a positive curvature in the azimuthal direction
and a negative curvature in the axial direction.

When using the Navier–Stokes equation to analyze the flow of two immiscible fluids, 1
and 2, the Young–Laplace appears as a boundary condition at the interface between the
two fluids. In the direction of the surface normal n the difference between the stresses
σ(1) and σ(2) of the two fluids, see Eq. (1.44), must equal ∆psurf to avoid the existence of
un-physical forces of infinite magnitude,

−
(
p(1) − p(2)

)
ni +

(
σ

(1)
ik − σ

(2)
ik

)
nk =

( 1
R1

+
1

R2

)
γ(12) . (5.9)

5.2 Contact angle

Another fundamental concept in the theory of surface effects in microfluidics is the contact
angle that appears at the contact line between three different phases, typically the solid
wall of a channel and two immiscible fluids inside that channel. The two concepts, contact
angle and surface tension, allow for understanding the capillary forces that act on two-fluid
flows inside microchannels in lab-on-a-chip systems.

5.2.1 Definition of the contact angle

The contact angle θ is defined as the angle between the solid-liquid and the liquid-gas inter-
face at the contact line where three immiscible phases meet, as illustrated in Fig. 5.3(a).
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(a) (b)

solid

liquid in
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displaced
liquid

gas

δ`

δ` cos θ

θ θ

Figure 5.3: (a) The contact angle θ is defined as the angle between the solid-liquid and
the liquid-gas interface at the contact line. The picture is taken from a measurement
of the contact angle of a water drop on a pure (and reflecting) silicon dioxide substrate
in air showing θ = 52.3◦, courtesy the groups of Kristensen and Bruus at MIC. (b) A
sketch of the small displacement δ` of the contact line away from the equilibrium position.
The change of the interface areas are proportional to +δ`, +δ` cos θ, and −δ` for the
solid-liquid, liquid-gas, and solid-gas interface, respectively.

In equilibrium θ is determined by the three surface tensions γsl, γlg, and γsg for the
solid-liquid, liquid-gas and solid-gas interfaces by Young’s equation to be discussed in the
following subsection. Some typical values for contact angles θ are listed in Table 5.1.

Whereas the contact angle is well-defined in equilibrium it turns out to depend in a
complicated way on the dynamical state of a moving contact line. One can for example
observe that the contact angle at the advancing edge of a moving liquid drop on a substrate
is different from that at the receding edge.

5.2.2 Young’s equation; surface tensions and contact angle

To derive an expression for the contact angle in equilibrium we again use the free energy
minimum condition Eq. (5.1). We consider the system sketched in Fig. 5.3(b), where in
equilibrium a flat interface between a liquid and a gas forms the angle θ with the surface
of a solid substrate. Imagine now that the liquid-gas interface is tilted an infinitesimal
angle around an axis parallel to the contact line and placed far away from the substrate
interface. As a result the contact line is moved the distance δ` while keeping the contact
angle θ. To order δ` the only change in free energy comes from the changes in interface
areas near the contact line. It is easy to see from Fig. 5.3(b) that the change of the
interface areas are proportional to +δ`, +δ` cos θ, and −δ` for the solid-liquid, liquid-gas,
and solid-gas interface, respectively. The energy balance at equilibrium Eq. (5.1) for the
Gibbs energy per unit length 1

w δG along the contact line becomes,

1
w

δG = γslδ` + γlgδ` cos θ − γsgδ` = 0, (5.10)

which after simple rearrangements gives Young’s equation for the contact angle θ,

cos θ =
γsg − γsl

γlg

. (5.11)
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Figure 5.4: (a) The importance of surface tension for microsystems illustrated by an insect
able to walk on water. The gravitational force is balanced by the surface tension of the
water-air interface. (b) Capillary rise in a vertically standing cylindrical microchannel.

Systems with contact angles θ < 90◦ are called hydrophilic (water loving), while those
with θ > 90◦ are called hydrophobic (water fearing).

5.3 Capillary rise

In the previous discussion we have neglected gravity, an approximation that turns out to
be very good in many cases for various microfluidic systems. Consider for example an
incompressible liquid of volume Ω with a free liquid-air interface ∂Ω. The equilibrium
shape of the liquid will be determined by minimizing the free energy G consisting of the
surface energy and the gravitational potential energy of the bulk,

Gmin = min
Ω

{
γ

∫

∂Ω
da + ρ g

∫

Ω
dr z

}
, (5.12)

under the constant volume constraint
∫
Ω dr = const. Here the gravitational acceleration

is taken in the negative z direction, g = −g ez. The equilibrium shape for a free liquid
drop in zero gravity is a sphere, since the sphere has the minimal area for a given volume.

We see from Eq. (5.12) that the shape problem is governed by a characteristic length,
the so-called capillary length `cap,

`cap ≡
√

γ

ρ g
, (5.13)

which for the water-air interface at 20◦C takes the value

`water-air
cap =

√
0.073 J/m2

1000 kg/m3 9.81 m/s2
= 2.7 mm. (5.14)

Since a ¿ `cap ⇒ ρ g ¿ γ/a2, gravity does not influence the shape of free water-air inter-
faces in microfluidic systems of sizes a well below 1 mm. This insight can be used to analyze
the so-called capillary rise that happens in narrow, vertically standing microchannels.
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Capillary rise can be observed as sketched in Fig. 5.4(b) by dipping one end of a
narrow open-ended tube into some liquid. The liquid will rise inside the tube until it
reaches equilibrium at some height H above the zero level z = 0 defined as the flat liquid
level far away from the tube. The task is to determine H.

5.3.1 Capillary rise height

For simplicity we consider a vertically placed micro-tube with a circular cross section of
radius a ¿ `cap. The vertical direction is denoted ez and gravity is g = −g ez. The
contact angle of the tube-liquid-air system is denoted θ and the surface tension of the
liquid-air interface is called γ. Because a ¿ `cap and because the tube is circular the
liquid-air surface of minimal energy inside the tube will be spherical. Thus the two radii
of curvature are identical, and from the geometry of Fig. 5.4(b) we find

R1 = R2 ≡ R =
a

cos θ
. (5.15)

Because the liquid-air interface is curved, a Young–Laplace pressure drop ∆psurf will be
present across it. Following the sign convention of Eq. (5.8) the pressure is higher in
the convex air volume just above the interface as compared to the pressure pliq(H) in
the concave liquid volume just below the interface (we neglect the finite width δH of the
meniscus). Since the pressure of the air is standard atmospheric pressure p0, we find

pliq(H) = p0 −∆psurf = p0 −
2γ

R
= p0 −

2γ

a
cos θ. (5.16)

The pressure pliq(0) at z = 0 inside the liquid far away from the tube is p0 because the
Young–Laplace pressure across a flat surface is zero, but according to Eq. (2.3) it is also
given in terms of the hydrostatic pressure generated by the liquid above z = 0,

p0 = pliq(0) = pliq(H) + ρgH. (5.17)

Combining Eqs. (5.16) and (5.17) yields the equilibrium height H of the capillary rise,

H =
2γ

ρga
cos θ = 2

`2
cap

a
cos θ =

2
ρga

(γsg − γsl). (5.18)

Quite significant rise heights can be obtained in microchannels. From Table 5.1 we find
H = 4.2 cm for water in a 100 µm radius PMMA polymer channel, and H = 42 cm for
a = 10 µm.

Because it is relatively easy to measure accurately the geometrical quantities a, H,
and cos θ, Eq. (5.18) is one of the most accurate ways to measure surface tension,

γ =
ρg

2
aH

cos θ
. (5.19)
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5.3.2 Capillary rise time

After having established the equilibrium height H that the meniscus of the liquid reaches
by capillary rise inside a vertically placed tube with circular cross-section, we shall now
calculate the approximate rise time. Let L(t) be the height of the liquid column inside the
tube at time t. Equilibrium is reached as t →∞ so L(∞) = H. By mass conservation the
speed dL/dt by which the liquid rises must be given by the average velocity V0 = Q/(πa2)
of the vertical liquid flow inside the tube of radius a. If for simplicity we assume that
the liquid flow is a fully developed Poiseuille flow, we can express the flow rate Q by
Eq. (2.30b) and obtain

dL(t)
dt

= V0 =
Q

πa2
≈ a2∆p(t)

8η

1
L(t)

. (5.20)

The pressure drop ∆p(t) between z = 0 and z = L(t) induced by viscous friction in the
rising liquid column must equal the Young–Laplace pressure drop across the meniscus
minus the decreasing hydrostatic pressure of the liquid column,

∆p(t) = ∆psurf − ρ g L(t). (5.21)

When inserting this into Eq. (5.20) with the explicit expression Eq. (5.16) for ∆psurf we
obtain a first-order ordinary differential equation for the rise height L(t),

dL(t)
dt

=
γ

8η

[
2a cos θ

1
L(t)

− ρ ga2

γ

]
=

ρga2

8η

[
H

L(t)
− 1

]
. (5.22)

To facilitate the analysis the differential equation is made dimensionless,

t = τcap t̃, where τcap ≡
8ηH

ρga2
, (5.23a)

L = H L̃, (5.23b)

dL̃(t̃)
dt̃

=
1

L̃(t̃)
− 1, L̃(0) = 0, L̃(∞) = 1. (5.23c)

At small times t̃ ¿ 1 we have L̃ ¿ 1, so dL̃/dt̃ ≈ 1/L̃. This is easily integrated to give

L̃(t̃) =
√

2t̃, t̃ ¿ 1. (5.24)

For large times t̃ →∞ we have L̃ → 1 from below. Thus we can write L̃ = 1− δL̃, where
0 ≤ δL̃ ¿ 1. Inserting this in Eq. (5.23c) we get −d(δL̃)/dt̃ = 1/(1− δL̃)−1 ≈ δL̃, which
implies δL̃ ∝ exp(−t̃). We therefore arrive at

L̃(t̃) = 1− exp
(− t̃

)
, t̃ À 1. (5.25)

Going back to physical dimensions we can conclude that the meniscus in capillary rise
initially advances as the square root of time, but on the time scale τcap it crosses over
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to approach the equilibrium height H asymptotically as an exponential saturation with
the same time scale τcap as the characteristic time in the exponent. Recalling from the
discussion of Eq. (5.18) that for water in a PMMA tube of radius a = 100 µm we have
H = 4.2 cm, the value for τcap in this case becomes

τwater-air
cap = 3.4 s. (5.26)

This value is good news, because the whole calculation of the capillary rise time was made
under the assumption that the Poiseuille flow profile was fully developed, and as we know
from Eq. (4.72) this profile is established on the much smaller time scale of 2 ms. The
result for the capillary rise time is thus consistent with the assumption of the calculation.

5.3.3 Capillary rise and dimensionless numbers

We end the section on capillary rise by mentioning three dimensionless numbers that often
are used to characterize the phenomenon.

When some characteristic length scale a is established for a system, the Bond number
Bo of the system can be introduced,

Bo =
gravitational force

surface tension force
=

ρga2

γ
=

a2

`2
cap

. (5.27)

Note that Bo = 1 if the characteristic length scale equals the capillary length, a = `cap.
Surface tension dominates over gravitation when Bo ¿ 1 or equivalently, when the char-
acteristic size a of the system is much smaller than the capillary length, a ¿ `cap.

When some characteristic velocity V0 is imposed on the system, the capillary number
Ca can be introduced,

Ca =
viscous force

surface tension force
=

ηV0

γ
. (5.28)

Note that Ca = 1 if the imposed velocity equals the intrinsic viscosity-surface velocity,
V0 = γ/η.

Finally, given two dimensionless numbers their ratio will also be a dimensionless num-
ber. The ratio of Ca and Bo is denoted the Stokes number NSt, and it can be introduced
when both a length scale and a velocity scale is given,

NSt =
viscous force

gravitational force
=

Ca

Bo
=

ηV0

ρga2
. (5.29)

5.4 Capillary pumps

If a microchannel is placed horizontally along the x axis as shown in Fig. 5.5, the gravita-
tional force cannot balance the capillary forces, so the capillary ”rise” or capillary flow will
continue as long as there is a channel for the liquid to propagate in. The theory for the
position L(t) of the meniscus in this case is analogous to the theory of capillary rise treated
in the previous section, except that gravity now drops out of the equations. The position
L(t) = 0 is defined as the entrance of the microchannel at the input reservoir, which is is
so wide that no Young–Laplace pressure drop is present there, i.e., p(x = 0) = p0.
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Figure 5.5: A sketch of the principle of a capillary pump (dark gray). The curved meniscus
at position L(t) results in an uncompensated Young–Laplace under-pressure −∆psurf that
drives the liquid (light gray) to the right in the microchannel . Notice all the points where
the pressure is (approximately) equal to the atmospheric pressure p0 of the air (white).

5.4.1 Capillary pump advancement times

We are going to apply the capillary pump analysis for microfluidic channels with flat
rectangular cross-sections of width w and height h ¿ w. Hence we shall use the Hagen–
Poiseuille result Q = h3w∆p/(12ηL) of Eq. (2.53). The pressure drop ∆p between the
entrance at x = 0 and the advancing meniscus at x = L(t) is constant and simply given
by the Young–Laplace pressure drop,

∆p = ∆psurf =
2γ

h
cos θ. (5.30)

In analogy with Eq. (5.20) the speed dL(t)/dt by which the front of the liquid is advancing
through the microchannel is determined by mass conservation of the flow in the tube.
Assuming a full developed Poiseuille flow profile at x = 0, we find at x = L(t) that

dL(t)
dt

= V0 =
Q

wh
≈ h2∆psurf

12η

1
L(t)

. (5.31)

This differential equation is easily integrated by separation of L dL and dt. Introducing
the characteristic time τadv for the capillary advancement of the meniscus,

τadv ≡
6η

∆psurf

=
3ηh

γ cos θ
(parallel-plate channel), (5.32)

the solution can be written as

L(t) = h

√
t

τadv

. (5.33)

This result is analogous to the small-time behavior Eq. (5.24) of capillary rise.
The above analysis is easily redone for a circular channel of radius a, and as result

Eq. (5.33) and τadv are slightly changed,

L(t) = a

√
t

τadv

, τadv ≡
4η

∆psurf

=
2ηa

γ cos θ
(circular channel). (5.34)
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(a) (b) (c)

Figure 5.6: A bio-sensor with a capillary-force pump fabricated in 20 µm thick PMMA by
the group of Boisen at MIC. (a) The design of the 35 mm × 30 mm chip, which contains six
circular reservoirs of radius r = 4 mm and three channels of width w = 200 µm connecting
them pair-wise. (b) The center of the chip where each of the three channels widens into a
1.2 mm × 1.0 mm rectangular measuring site, and where the bio-sensing is done by use of
cantilevers dipped into the liquid. (c) A microscope picture of the central detection site
in the actual device.

5.4.2 A bio-sensor chip with a capillary-force pump

As an example of the use of capillary pumps in lab-on-a-chip systems we shall study the
bio-sensor chip developed by the group of Boisen at MIC, see Fig. 5.6.

The core of the system is the use of micrometer scale cantilevers which have been
coated with specific bio-molecules. Such cantilevers can be used as a bio-sensors when
they are immersed into a liquid biochemical solution. The principle of operation is simple:
When biochemical reactions take place at the surface of the cantilever mechanical surface
stresses are induced. The cantilever bends due to these stresses, and the bending can be
detected by a piezo-resistive read-out built into the cantilever. By careful selection of the
bio-coating, the cantilever can be designed to respond selectively to certain bio-molecules.

The chip is constructed by spinning a polymer layer, here PMMA of height h = 20 µm,
onto a glass plate. By photolithography six circular reservoirs of radius r = 4 mm are
etched into the PMMA-layer and three channels with rectangular cross-sections of width
w = 200 µm and height h = 20 µm are connecting them pair-wise. The mask design of the
chip is shown in Fig. 5.6(a). At the center of the chip each of the three channels widens
into a 1.2 mm× 1.0 mm rectangular measuring site, see Fig. 5.6(b), where the cantilever
probes are going to be dipped into the liquid. The whole chip is covered by a second glass
plate to close off the microfluidic channels, but holes are provided for liquid handling at
the six reservoirs and at the three measuring sites. In Fig. 5.6(c) is shown a microscope
picture of one of the measuring sites. Using a simple pipette the biochemical liquid is
injected into one of the large reservoirs. By capillary forces the liquid is sucked into the
microchannel leading from the reservoir to the measuring site.

To apply Eqs. (5.32) and (5.33) we define the beginning of the capillary channel, x = 0,
at the reservoir inlet reservoir. The distance from a center reservoir or a corner reservoir
to the corresponding measuring site is L1 = 8 mm and L2 = 15 mm, respectively. Using
the physical parameter values in Table 5.1 for a water-PMMA-air system we find the time
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tarriv it takes the liquid to arrive at the measuring sites to be

tarriv ≈ 1 s. (5.35)

The ”power-less” capillary pump systems is thus both adequate and handy for the task of
delivering liquids at specific points on the chip.

5.5 Marangoni effect; surface tension gradients

In establishing Eq. (5.9) for the matching condition for Navier–Stokes equation at the
interface between two immiscible fluids, we have assumed that the surface tension is a
constant. However, there are many cases where the surface tension in fact is varying
in space. Especially gradients in the concentration of surfactants (such as soap) at the
interface and temperature gradients implies gradients in the surface tension γ.

Just as gradients in the pressure field implies a gradient force per volume, −∇p, so does
a gradient in the surface tension imply a gradient force per area, +∇γ. The difference
in sign between the two gradient forces is due to the fact that pressure forces tend to
maximize volume, whereas surface-tension forces tend to minimize area. The surface-
tension gradient force is known as the Marangoni force,

fMaran ≡ ∇γ. (5.36)

Adding the Marangoni force to Eq. (5.9) yields a more general matching condition,

−
(
p(1) − p(2)

)
ni +

(
σ

(1)
ik − σ

(2)
ik

)
nk =

( 1
R1

+
1

R2

)
γ(12) + ∂iγ

(12) . (5.37)

One can get an idea of the size of temperature induced Marangoni forces by noting
that the heating up a water-air interface by 5 ◦C from 20 ◦C to 25 ◦C will lower the surface
tension by 0.8 mJ/m2 from 72.9 mJ/m2 to 72.1 mJ/m2. The shorter a distance over which
one can maintain this temperature gradient the stronger the Marangoni force; but in all
cases only in microsystems one can hope for a sufficiently large effect compared to other
forces.

The Marangoni force can be used as a micro propulsion system, as some bacteria
actually do in Nature. The principle is simple: If one emits some surfactant that lowers
the surface tension behind a little body then the body will be pushed forward, as the
interface tries to minimize the region of high surface tension (without surfactant) while
maximizing the region of low surface tension (with surfactant). One can build a little boat
illustrating this principle by attaching a piece of soap at the end of a stick. As the soap
dissolves the stick moves forward.

5.6 Exercises

Exercise 5.1
Surface tension interpreted as force per length
Make a sketch clarifying the geometry of the stretched-surface argument, which in Sec-
tion 5.1.1 led to Eq. (5.5). Derive this equation carefully using your sketch.
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Exercise 5.2
The Young–Laplace pressure in a flat channel with equal contact angles
Argue why the Young–Laplace pressure drop indeed is given by Eq. (5.30) for a liquid-gas
interface inside a flat and very wide rectangular channel with the same contact angle for
the top and bottom plate.

Exercise 5.3
The Young–Laplace pressure in a flat channel with different contact angles
Find the expression for the Young–Laplace pressure drop across a liquid-gas interface with
surface tension γ inside a flat and very wide rectangular channel of height h, where the
contact angle for the bottom and top plate are given by θ1 and θ2, respectively.

Exercise 5.4
Droplets on substrates with various contact angles
Consider liquid droplets on a solid substrate in air for the following three cases: water on
gold, water on platinum, and mercury on glass. Use the values of the physical parameters
given in Table 5.1 and make a sketch of the resulting shapes assuming small droplets
a ¿ `cap in all three cases.

Exercise 5.5
Capillary rise for mercury
Consider mercury (Hg) as the liquid in a capillary rise experiment using a glass tube of
radius a = 100 µm. The relevant physical parameters for Hg and glass are ρ = 1.36 ×
104 kg/m3, θ = 140◦, and γ = 0.487 J/m2.

(a) Go through the arguments leading to the expression Eq. (5.18) for the capillary
rise height H. Hint: make a sketch like Fig. 5.4(b) and be careful with the sign of cos θ.

(b) Determine the value of H for the mercury-glass system.

Exercise 5.6
Alternative formula for the capillary rise height
Consider the expression Eq. (5.18) for the capillary rise height H.

(a) Use Young’s equation to show the second expression for H,

H =
2

ρga
(γsg − γsl). (5.38)

(b) Use the constant energy argument, δG = 0, at equilibrium to prove Eq. (5.38) con-
sidering a displacement δH away from the equilibrium position H and the corresponding
change δGgrav in gravitational energy and δGsurf in surface energy. Hint: Note that the
shape of the meniscus remains unchanged during the displacement and hence does not
contribute to any change in the Gibb’s free energy.
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Exercise 5.7
The expressions for the capillary rise time
Consider Section 5.3.2, where the dynamics of the capillary rise is treated.

(a) Derive the dimensionless differential equation Eq. (5.23c) for the position L̃(t̃) of
the rising meniscus during capillary rise.

(b) Verify that the solutions Eqs. (5.24) and (5.25) are correct.

Exercise 5.8
Dimensionless numbers for capillary rise
Consider Section 5.3.3, where the three dimensionless numbers Bo, Ca, and NSt are de-
fined.

(a) Calculate the values of these three dimensionless numbers for the same physical
parameter values that led to the estimate for τwater-air

cap in Eq. (5.26), and use V0 = H/τcap.
(b) Discuss the significance of the obtained values.

Exercise 5.9
Liquids advancing by capillary forces in horizontal microchannels
Consider Section 5.4.1, where the the capillary pump advancement times are discussed.

(a) State the assumptions leading to Eq. (5.33) for the position of the advancing
meniscus in a capillary pump.

(b) Check that solution Eq. (5.33) is consistent with the assumptions.

Exercise 5.10
Capillary pump with circular cross section
In Section 5.4.1 the capillary pump with rectangular cross section is analyzed. Redo the
analysis for a capillary pump with a circular cross section and prove Eq. (5.34) for the
advancement time τadv.

Exercise 5.11
Advancement times in the capillary pump
Apply the results of Section 5.4 to the following problems.

(a) Calculate more precisely the arrival times t
(1)
arriv and t

(2)
arriv for the liquids advancing

from a corner reservoir and a center reservoir, respectively, in the bio-sensor chip described
in Section 5.4.2.

(b) Use Table 5.1 to predict how the advancement times would alter if the walls of the
capillary pump were changed from PMMA to gold and to platinum.

(c) Discuss the consequences for the functionality of a capillary pump if θ = 90◦ and
if θ > 90◦.

Exercise 5.12
The sign of the Marangoni force
Make a sketch of a surface with a varying surface tension γ. Argue why the sign in the
Marangoni force, fMaran ≡ +∇γ, is positive.
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5.7 Solutions

Solution 5.1
Surface tension interpreted as force per length
During the stretch the force F acts over the distance ∆L thus performing the work
∆W = F∆L on the surface. Assuming that energy is not dissipated all external work
is transformed into surface energy ∆Gsurf = γw∆L. Thus W = ∆Gsurf , which implies
γ = F/w.
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Solution 5.2
The Young–Laplace pressure in a flat channel with equal contact angles
The curvature in the wide transverse direction of the flat channel is of the order 2/w, so
inclusion of the radii of curvature in both directions leads to a the Young–Laplace pressure
of the form ∆psurf = γ(2/h+2/w) cos θ = (2γ/h)(1+h/w) cos θ ≈ (2γ/h) cos θ, for h À w.

Solution 5.3
The Young–Laplace pressure in a flat channel with different contact angles
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The distance between the bottom and top plate of the flat
channel is denoted h. Let θ1 and θ2 be the contact angle at
the bottom and top plate, respectively, then, as shown to the
left, h = R cos θ1 + R cos θ2. Assuming that the only non-zero
radius of curvature R is perpendicular to the plates, the Young–
Laplace pressure is given by

∆psurf =
γ

R
=

γ

h
(cos θ1 + cos θ2) =

2γ

h

cos θ1 + cos θ2

2
. (5.39)

Solution 5.4
Droplets on substrates with various contact angles���������	�
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Solution 5.5
Capillary rise for mercury
For mercury θ = 140◦ > 90◦. As a consequence the liquid surface in a sketch corresponding
to Fig. 5.4(b) will curve the other way, and ∆psurf changes sign. So the under-pressure
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becomes an over-pressure leading to capillary fall instead of rise. The arguments leading
to Eq. (5.18) still holds, so H = 2γ cos θ/(ρga) = −55.7 mm.

Solution 5.6
Alternative formula for the capillary rise height
The second expression for H in Eq. (5.18) clearly shows that capillary rise is due to gain
in energy obtained when liquid covers an area of a solid previously covered by gas.

(a) Young’s equation states that γ cos θ = γsg−γsl, hence the desired result follows by
simple substitution.

(b) A vertical displacement δH changes the gravitational energy by the amount
δGgrav = mgδH = (ρπa2H)gδH, while the corresponding change in surface energy is
δGsurf = (γsl − γsg)A = (γsl − γsg)2πaδH. From δGgrav + δGsurf = 0 follows the desired
result, 2(γsl − γsg) = ρgaH.

Solution 5.7
The expressions for the capillary rise time
Eq. (5.22) follows directly from the assumption of a fully developed quasi-stationary
Poiseuille flow Eq. (5.20) driven by the constant Young–Laplace pressure minus the time-
dependent hydrostatic pressure Eq. (5.21).

(a) The dimensionless form of Eq. (5.22) is obtained by multiplying the equation
by 8η/(ρga2) and substituting L by HL̃. This yields τcapdL̃/dt = L̃

−1 − 1. Finally,

substituting t by τcapt̃ leads to the result dL̃/dt̃ = L̃
−1 − 1, Eq. (5.23c).

(b) For t̃ ¿ 1 we have L̃ ≈
√

2t̃ ¿ 1, Eq. (5.24). Hence dL̃/dt̃ =
√

21
2/
√

t̃ = 1/
√

2t̃ =

1/
√

L̃ ≈ 1/
√

L̃ − 1.
For t̃ À 1 we have L̃ ≈ 1 − exp(−t̃) and exp(−t̃) ¿ 1, Eq. (5.25). Consequently,

dL̃/dt̃ = exp(−t̃) = [1 + exp(−t̃)]− 1 ≈ 1/[1− exp(−t̃)]− 1 = 1/L̃ − 1.

Solution 5.8
Dimensionless numbers for capillary rise
The parameters used in Eq. (5.26) are a = 100 µm, ρ = 103 kg/m3, g = 9, 81 m/s,
η = 10−3 Pa s, and γ = 0.073 J/m2. Moreover, V0 = H/τcap ≈ 1 cm/s.

(a) From the parameter values follow Bo = 1.3×10−3, Ca = 1.4×10−5, and NSt = 0.1.
(b) Since Bo ¿ 1 and Ca ¿ 1 surface tension dominates over both gravity and

viscosity. And since NSt ¿ 1 gravity dominates over viscosity.

Solution 5.9
Liquids advancing by capillary forces in horizontal microchannels
We discuss the consistency of Eq. (5.33) with the underlying assumptions.

(a) The main assumptions are (i) translation invariance along the x axis, (ii) quasi-
stationary Poiseuille flow, i.e., the acceleration term ρ∂tvx is negligible in the Navier–Stokes
eqaution, and (iii) the circulation rolls in the front of the liquid string have a negligible
influence on the flow. These rolls must exist to ensure a smooth transition from the
Poiseuille flow parabola in the bulk of the liquid and the curved meniscus at the front
moving at constant speed.
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(b) Assuming that Eq. (5.33), stating L ∝ t1/2, is correct, we find v = ∂tL = 1
2L/t

and ∂tv = −1
2L/t2 = −v/t. Moreover, if Poiseuille flow is present in the majority of the

liquid string, η∂ 2
z v = ∆p/L = [12ηL/(wh3)]Q/L = (12η/h2)v. So the acceleration term

can be neglected if |ρ∂tv| ¿ |η∂ 2
z v|, i.e., if ρv/t ¿ (12η/h2)v or h2/(12ν) ¿ t, where ν

is the kinematic viscosity. For h = 100 µm and ν = 10−6 m2/s we find it necessary to
demand that t À 0.8 ms to ensure that the solution is consistent with assumption (ii).

Since hydrodynamics do not contain an intrinsic length scale, the circulation rolls in
the front of the liquid string must have the size h. Hence, they can be neglected if they
are must smaller than the entire liquid string, h ¿ L, which means 1 ¿ √

t/τadv or
t À τadv. Using in Eq. (5.32) the usual parameters for water as well as h = 100 µm, we
find τadv ≈ 10 µs. Thus the solution is consistent with assumption (iii) if t À 10 µs, but
this is already ensured if assumption (ii) holds.

Solution 5.10
Capillary pump with circular cross section
For a circular cross section with radius a, Eq. (5.30) becomes ∆psurf = 2γ cos θ/a while
Eq. (5.31) changes to dL/dt = a2∆psurf/(8ηL). This in turn modifies Eq. (5.32) to τadv =
4η/∆psurf = 2ηa/γ cos θ as stated in Eq. (5.34).

Solution 5.11
Advancement times in the capillary pump
The channels under consideration have h = 20 µm and w = 200 µm and thus an aspect
ratio h/w = 0.1. The correction factor for the hydraulic resistance becomes

1− 0.630
h

w
= 0.937. (5.40)

Since this correction factor according to Eq. (2.49) appears opposite the viscosity η it is
natural to define an effective viscosity ηeff by

ηeff ≡
η

1− 0.630 h
w

= 1.067η. (5.41)

The finite width of the channel implies an apparent increase in the viscosity (or in reality
in the hydraulic resistance).

(a) The capillary advancement time τadv for the PMMA-water-air system can now be
estimated from Eq. (5.32) as

τadv =
3ηeffh

γ cos θ
(5.42)

=
3 (1.067× 10−3) (2× 10−5)

0.0729 cos(73.7◦)
s (5.43)

= 3.129× 10−6 s. (5.44)

From Eq. (5.33) follows

t =
(L

h

)2
τadv. (5.45)
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With L1 = 8 mm and L2 = 15 mm the advancement times t1 and t2 become

t1 = 0.500 s, t2 = 1.760 s. (5.46)

(b) Changing from PMMA to platinum or gold leads to a lowering of the contact
angle θ. This increases cos θ and thus decreases τadv ∝ 1/ cos θ. The pump becomes more
efficient by this change in material with the gold being the best choice if fast pumping is
wanted.

(c) In the limit θ → 90◦ we obtain cos θ → 0, and consequently τadv →∞. The pump
ceases to work. For θ > 90◦ it costs surface energy for the liquid to enter the pump, so
in fact the pump will force out liquid initially present in the channels. It thus acts as a
pump in the reverse direction.

Solution 5.12
The sign of the Marangoni force
Consider the sketch to the right shown in Solution 5.1, and assume that the surface
tension γ varies as a function of x (the L-direction). The external force F acting at
x = L is shown, F (L) = γ(L)w. Similarly, an anti-parallel external force in must act at
x = 0 given by F (0) = −γ(0)w, hence the total surface tension force acting on the area
is Ftot = F (L) − F (0) = [γ(L) − γ(0)]w. Thus the surface tension force per area, the
Marangoni force, becomes fMaran = Ftot/wL = [γ(L)− γ(0)]/L → +∂xγ, for L → 0.



Chapter 6

Numerical simulations

In the previous chapters we have studied some analytical solutions to the Navier–Stokes
equation and the convection-diffusion equation. Although these solutions are very impor-
tant they are in fact also very special: only in a few and highly symmetric cases is it
possible to find analytical solutions. In the vast majority of cases we are forced to perform
numerical simulations to get the solutions to the complicated set of partial differential
equations that appears in theoretical microfluidics.

There are many ways to find the solutions to partial differential equations numerically.
Most methods rely on some sort of discretization and transformation of the continuous
equations into a matrix problem, which then can be solved by one of the many existing
matrix solvers. The computer code to handle the problem can be written from scratch
using general purpose software like Fortran, C, MATLAB or Mathematica, or by employing
a specialized software for solving partial differential equations like ANSYS, Coventer,
CFDACE, or COMSOL Multiphysics.

In this course we shall use COMSOL Multiphysics to illustrate how to solve prob-
lems in microfluidics numerically. COMSOL is designed to solve a wide range of partial
differential equations comprising most of the equations appearing in physics and chem-
istry such as the Navier–Stokes equation, the Poisson equation, the Schrödinger equation,
the convection-diffusion equation, the Maxwell equations, and problems combining these
equations. COMSOL allows the unexperienced user to quickly get started and solve fairly
complex microfluidics problems, while it remains a powerful tool for the experienced user.

The basic numerical method used in COMSOL is the so-called finite element method
(FEM). While this method perhaps is not the first choice for fluidic problems exhibiting
turbulence, it is very good for the low Reynolds number problems encountered in microflu-
idics. In the following we shall take a brief look at the idea of FEM, and then move on to a
short introduction to COMSOL including some examples. Once started on COMSOL the
user can with the help of the on-line user guides and user manuals launch into a self-study
and progress on his own.

A good account of the theory of FEM is the M.Sc.-thesis Computational fluid dynamics
in microfluidic systems by Laurits Højgaard Olesen (July, 2003) available at the web-page
www.mic.dtu.dk/research/MIFTS of the group of Bruus at MIC.

109
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(a) (b)

y

x

Figure 6.1: (a) The FEM mesh for half of the cross-section of the Gaussian-shaped mi-
crofluidic channel of Fig. 2.4(b). (b) The corresponding FEM domain showing one of the
linearly interpolating basis function φj .

6.1 The finite element method (FEM)

Consider a vector field v(r, t) for which we want to solve a partial differential equation in
some domain Ω,

Dv(r, t) = f(r, t), for r ∈ Ω, (6.1)

where D is some differential operator and where f(r, t) is the source or forcing term. The
solution must typically respect some boundary conditions of the Dirichlet or the Neumann
type (or a combination of the two),

vi(r, t) = a(r), for r ∈ ∂Ω, (Diriclet boundary condition), (6.2a)
(n·∇)vi(r, t) = b(r), for r ∈ ∂Ω, (Neumann boundary condition), (6.2b)

where n as usual is the outward-pointing normal vector of the surface. Solutions to the
problem in the form of Eqs. (6.1) and (6.2) are called strong solutions.

6.1.1 Discretization using finite elements

Normally, it is not possible to obtain strong solutions for the problem at hand. Instead one
usually discretize the otherwise continuous problem and obtain so-called weak solutions;
weak in the sense of approximate.

A typical discretization of a 2D computational domain Ω is shown in Fig. 6.1(a) in
the form of a mesh containing a finite number of finite-sized triangular elements. These
elements are the origin of the name FEM. Each element in the 2D mesh consists of a
number of straight edges, and a number of corners denoted nodes.

It is now possible to introduce a finite set of N basis functions φj . As sketched in
Fig. 6.1(b) the jth basis function is only non-zero in the neighboring elements containing
the jth node rj . At rj itself the basis function becomes unity, φj(rj) ≡ 1, while it decays
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(a) (b)

Figure 6.2: (a) A basis function corresponding to linear interpolation within an element.
(b) A basis function corresponding to quadratic interpolation within an element.

continuously to zero on the edges connecting the neighboring nodes. Using these basis
functions the solutions to the differential equation is sought on the following discrete form

vi(r) ≈
N∑

j=1

v
(i)
j φj(r), (6.3)

where the coefficients v
(i)
j are to be determined.

There are many choices for the specific form of the basis functions φj . Two commonly
used forms are the linear and the quadratic interpolating functions shown in Fig. 6.2.

6.1.2 Weak solutions

In the theory of partial differential equations it has been shown that there are no condi-
tions that ensures the existence of a unique solution to the problem Eqs. (6.1) and (6.2).
However, such a existence and uniqueness theorem does in fact exist for the so-called weak
solution to the problem. A weak solution is defined in the following by the introduction
of the inner product in function space.

Consider the set FΩ of ”well-behaved”, real functions on Ω. The inner product 〈u, v〉
for any pair of functions u, v ∈ FΩ is defined by

〈u, v〉 ≡
∫

Ω
dr u(r)v(r). (6.4)

If we let v be a strong solution to Eq. (6.1), then Dv − f = 0. It is therefore natural
to define the defect d(w) for any function w as

d(w) ≡ Dw − f . (6.5)

A weak solution w to Eq. (6.1) is defined as a function with a defect d(w) that has a
vanishing inner product with any function v within the function space FΩ,

〈vi, [d(w)]i〉 ≡ 0, for all vi ∈ FΩ. (6.6)
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Clearly, a strong solution is also a weak solution, but the converse is not necessarily true.
The introduction of weak solutions relaxes the constraints that we must put on the

functions belonging to FΩ. The differential operators D in all of the partial differential
equations we shall work with contain only up to second order derivatives. For strong
solutions this implies that the functions should have at least continuous first derivatives
to avoid infinite second derivatives. However, for weak solutions it suffices to deal with
continuous functions which are only piecewise differentiable. This can be seen by partial
integration of the inner product of a function v with the term ∇2w contained in Dw of
Eq. (6.5) as follows,

∫

Ω
dr v∇2w =

∫

∂Ω
da v(n·∇)w −

∫

Ω
dr (∇v) · (∇w). (6.7)

The surface integral is handled by invoking the boundary conditions Eq. (6.2) while the
volume integral is well-defined as long as v and w are just piecewise differentiable.

6.1.3 The Galerkin method

In the Galerkin method a weak solution wi(r) =
∑N

j=1 w
(i)
j φj(r) written in terms of the

basis functions is obtained by demanding that its defect d(wi) has a zero inner product
with all basis functions,

〈φk, Dwi − fi〉 = 0, k = 1, 2, . . . , N. (6.8)

This condition can be written as a finite matrix equation,

N∑

j=1

〈φk, Dφj〉 w
(i)
j = 〈φk, fi〉. (6.9)

The matrix problem of the Galerkin method is not simple to tackle numerically. To
obtain an accurate solution it is often necessary to employ a fine mesh containing many
elements. The N × N matrix of Eq. (6.9) thus becomes very large. However, since
each basis function is non-zero in only one element, the matrix is sparse. This sparsity
is utilized fully when implementing good computer codes for the finite element method.
The sparsity leads to a significant reduction in memory requirements since only the non-
zero matrix elements need to be stored together with an index of where they are stored.
Moreover, the sparsity implies a huge reduction in the number of arithmetic operations
needed to solve the problem. For a full matrix problem this number is proportional to N3

for standard Gauss elimination, but by using direct banded matrix schemes, or iterative
methods like conjugate gradient methods or multi-grid methods, it can be reduced to
becoming proportional to N2 or even N .

6.1.4 The Navier–Stokes equation in FEM

Using the Galerkin finite element method the Navier–Stokes equation

ρ
[
∂tv + (v·∇)v

]
= −∇p + η∇2v + f (6.10)
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is rewritten in the spirit of Eq. (6.9) as

ρ
[
〈φj , ∂tv〉+ 〈φj , (v·∇)v〉

]
+ η〈∇φj ,∇v〉 − 〈∇φj , p〉 = 〈∇φj , f〉 −

∫

∂Ω
da

[
np− η(n·∇)v

]
.

(6.11)
Here partial integrations have been performed to get rid of the Laplace operator ∇2 and
the pressure gradient ∇p. The Navier–Stokes equation is as usual supplemented by the
continuity equation ∇·v = 0 for incompressible fluids,

〈φj ,∇·v〉 = 0. (6.12)

When expanding the velocity components vx and vy as well as the pressure p in terms of
the basis functions φj we obtain the following system of matrix equations

ρ
[
Mv̇x + Cvx

]
+ ηKvx −QT

xp = fx, (6.13a)

ρ
[
Mv̇y + Cvy

]
+ ηKvy −QT

y p = fy, (6.13b)

Qxvx + Qyvy = 0, (6.13c)

where the column vectors vx, vy, and p contain the expansion coefficients for the velocity
and pressure fields. The other matrices appearing are the mass matrix

Mjk = 〈φj , φk〉, (6.14)

the stiffness matrix
Kjk = 〈∇φj ,∇φk〉, (6.15)

the convection matrix

Cjk =
〈
φj ,

[∑
m

φmv(m)
x

]
∂xφk +

[∑
m

φmv(m)
y

]
∂yφk

〉
, (6.16)

and the divergence matrices

Qx,jk = 〈φj , ∂xφk〉, (6.17a)

Qy,jk = 〈φj , ∂yφk〉. (6.17b)

Finally, the force vectors fx and fy on the right-hand side include both the body force and
the boundary integral from the partial integrations,

fx,j = 〈φj , fx〉 −
∫

∂Ω
da φk

[
nxp− η(n·∇)vx

]
, (6.18a)

fy,j = 〈φj , fy〉 −
∫

∂Ω
da φk

[
nyp− η(n·∇)vy

]
. (6.18b)

With this we end the very brief and superficial treatment of the general theory and
move on to discuss the use of the software package COMSOL in solving microfluidic
problems.
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6.2 A short introduction to COMSOL

COMSOL can be considered as a high-level computer-language implementation of the
finite element method for solving general partial differential equations. COMSOL can be
run as a stand-alone platform or together with MATLAB. It can be run in two basic modes
of operation: either through the graphical user interface (GUI) or by running scripts. The
former is easier for the beginner or for simple or single tasks, whereas the latter is more
powerful and can be used to solve more complicated problems.

COMSOL contains a large number of convenient, predefined subroutines and tools,
but at the same time it allows the user to write his own subroutines.

6.2.1 The structure of problem-solving in COMSOL

The typical steps used when solving a problem using COMSOL are: (1) definition of
the geometry or domain of the problem, (2) definition of the partial differential equation
and boundary conditions to be solved, (3) meshing of the domain, (4) solution of the
problem, and (5) post-processing of the results to generate various graphs. For further
help on running COMSOL the built-in COMSOL manuals and users guide can be found
by clicking

”Start” → ”Programs” → COMSOL 3.2 → ”Documentation” → ”COMSOL”. (6.19)

This results in the appearance of a list with seven pdf-files. One of these is the ”Quick
Start” for beginners.

6.2.2 Solving a problem using the COMSOL graphical user interface

In the following is given one simple example for solving a flow problem with COMSOL
using the graphical user interface, namely the Poiseuille flow in the parallel infinite-plate
channel.

Naturally, we begin by launching COMSOL. We choose the option to run it together
with MATLAB as follows:

Start → Programs → COMSOL 3.2 → COMSOL with MATLAB. (6.20)

Wait a little while for the ”Model Navigator” window to appear. When it appears it is set
to run a 2D problem. Do not change this, but continue by clicking the following sequence:

Fluid Dynamics → Incompressible Navier–Stokes → Steady-state analysis. (6.21)

After entering the last item click ”OK”, which results in the opening of the geometry
window. Choose the ”rectangle”-bottom in the top-left corner of the menu that appeared
to the left. Make a long rectangle by click-and-drag inside the geometry window.

Having established a rectangular domain move on to define the differential equation
by clicking on ”Physics” on the top menu-bar followed by ”Subdomain settings”. Choose
subdomain 1 (there is only one). Fill in the desired values for ρ, η, and the components of
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Figure 6.3: The output from COMSOL on the simple Poiseuille flow problem studied in
Section 6.2.

the body-force. Click ”OK”. Since we have already chosen to work with the Navier–Stokes
equation it suffices just to define these parameters.

To define some proper boundary conditions click ”Physics” followed by ”Boundary
settings”. Select boundary 1 followed by ”Boundary condition: Inflow/Outflow velocity”.
Enter the parabolic velocity profile of the inlet in the form ”s∗(1−s)” in the x component
(here denoted u0. Notice that s going from zero to unity is always used as the natural
parameter of the curve that has been selected. Finish the boundary settings by choosing
boundary 4 to have the boundary condition Outflow/Pressure. Choose the predefined
value p0 = 0. Boundary 2 and 3 need not be set since the are already assigned the default
no-slip boundary condition.

Continue along the top menu-bar and press ”Mesh” just next to ”Physics”. Select first
”Initialize Mesh” followed by ”Refine Mesh”. This will generate a mesh with sufficient
resolution for the problem at hand.

Finally, click on ”Solve” just to the right of ”Physics” on the top menu-bar. After a
few seconds a beautifully colored plot appears showing the velocity component vx.

To change the plot click on ”Postprocessing” → ”surface”. Select ”Predefined quan-
tities” to be pressure. Then click on ”Arrow” and once the arrow-window appears mark
the field ”Arrow plot” in the top left corner. Choose the arrows to mark the velocity field.
Click ”OK” and obtain the plot shown in Fig. 6.3.

6.3 Some COMSOL scripts for microfluidics

We end this section by giving two explicit COMSOL scripts, one for computation of the
flow in the backstep geometry of Fig. 3.6 and the other for the shape-perturbed Poiseuille
flow of Section 2.5.
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To launch the scripts the ascii files containing the scripts must be available on the
computer. Go to the MATLAB window that was opened together with COMSOL and
click

File → Run Script . . . → Browse. (6.22)

In the browse-window the relevant script-file is located and activated.

6.3.1 Incompressible flow in a backstep geometry

% INCOMPRESSIBLE FLOW IN A BACKSTEP GEOMETRY AS IN FIG. 3.5
% Laurits H. Olesen (2004 06 03)

clear fem

% GEOMETRY
fem.geom = rect2(0,10,0,2) - rect2(0,3,0,1);
fem.mesh = meshinit(fem);

% SPACE DIMENSION
fem.sdim = {’x’ ’y’};

% DEPENDENT VARIABLES
fem.dim = {’u’ ’v’ ’p’};
fem.shape = [2 2 1];

% PHYSCICAL CONSTANTS
fem.const.rho = 1; % Density
fem.const.eta = 1; % Viscosity
fem.const.u0 = 1; % Velocity

% DEFINING THE STRESS TENSOR BY EXPRESSIONS
fem.expr = {’sigmaxx’ ’-p+2*eta*ux’ ...

’sigmaxy’ ’eta*(uy+vx)’ ...
’sigmayy’ ’-p+2*eta*vy’};

% GOVERNING EQUATIONS
fem.form = ’general’;
fem.equ.da = {{{’-rho’} {’-rho’} {’0’}}};
fem.equ.ga = {{{’sigmaxx’ ’sigmaxy’} {’sigmaxy’ ’sigmayy’} {’0’ ’0’}}};
fem.equ.f = {{{’rho*(u*ux+v*uy)’} {’rho*(u*vx+v*vy)’} {’ux+vy’}}};

% GROUP THE BOUNDARY INTO THREE GROUPS
fem.bnd.ind = {[2:5] [1] [6]};
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% BOUNDARY CONDITIONS
fem.bnd.r = {{{’u’} {’v’} {’0’}} ... % walls

{{’u-u0*4*s*(1-s)’} {’v’} {’0’}} ... % inlet
{{’0’} {’v’} {’0’}}}; % outlet

% PERFORM SYMBOLIC DIFFERENTIATION OF fem.equ AND fem.bnd FIELDS
fem = femdiff(fem);

% CREATE EXTENDED MESH STRUCTURE
fem.xmesh = meshextend(fem);

% SOLVE FOR STEADY STATE FLOW
fem.sol = femnlin(fem,’report’,’on’);

% PLOT SOLUTION
postplot(fem,’tridata’,’p’,’arrowdata’,{’u’ ’v’},’axisequal’,’on’)

6.3.2 Multipolar deformations and Poiseuille flows

% THE MULTIPOLAR-DEFORMED POISEUILLE FLOW OF SEC. 2.5
% Henrik Bruus (2004 07 28)

% INITIALIZATION
clear all;
close all;
name = ’ShapePert.dat’; % Name of output file
[fil,OpenMessage] = fopen(name,’wat’); % Open output file
disp([’Open file message: ’,OpenMessage]); % Print status of output file
fprintf(fil,’%s\n’,’a R_hyd Area Perim’);% Headline in output file

% ACQUIRE THE NUMBER OF PLOTS FROM THE USER
n = input(’How many plots? ’);
switch (n)

case {1,2,3} % arranging the plots in rows and columns
spR = 1; spC = n;

case {4,5,6}
spR = 2; spC = 3;

case {7,8,9}
spR = 3; spC = 3;

otherwise
spR = 3; spC = 4;

end;
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% THE MAIN LOOP
for i = 1:n,
disp([’i = ’ num2str(i)]); % Print a counter
if (i==1)

fig1 = figure; % Prepare the first figure and call it fig1
end;

% GEOMETRY
a = 0.02*(i-1); % perturbation parameter
t = 0:pi/50:2*pi; % a vector holding all angles theta
k = 3; % the order of the multipolar deformation
p = [(1+a*sin(k*t)).*cos(t); (1+a*sin(k*t)).*sin(t)];

% the perimeter

% PRINT A FIGURE WITH THE GEOMETRY OF THE POISEUILLE FLOW CROSS-SECTION
figure(fig1);
subplot(spR,spC,i);

% LET THE BOUNDARY C BE GIVEN BY THE PERIMETER P DEFINED ABOVE
c = geomspline(p,’splinemethod’,’uniform’,’closed’,’on’);
geomplot(c,’pointmode’,’off’); % plot the geometry
axis equal;
title([’a = ’ sprintf(’%4.2f’,a)]);
shg; % show the graphics
drawnow; % draw the graphics now

% SETTING UP THE COMSOL CALCULATION
clear fem; % clear the fem-structure
fem.geom = solid2(c); % the domain is the area with the boundary c

% SETTING THE EQUATIONS AND BOUNDARY CONDITIONS
fem.dim = ’u’; % call the variable for u
fem.equ.f = 1; % Set up a normalized Poiseuille problem
fem.equ.c = 1;
fem.bnd.h = 1;

% LAGRANGE ELEMENTS AND MESH
fem.shape = 2;
fem.mesh = meshinit(fem);
fem.xmesh = meshextend(fem);
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% PREPARE THE PLOTS OF THE SOLUTION
if (i==1)

fig2 = figure;
end;
figure(fig2);
subplot(spR,spC,i);
% Solve the Poiseulle flow problem
fem.sol = femlin(fem);

% PLOT THE SOLUTION
postplot(fem,’tridata’, ’u’, ’axis’, [-1.2 1.2 -1.2 1.2]);
title([’a = ’ sprintf(’%4.2f’,a)]);
axis equal;
shg;
drawnow;

% CALCULATE FLOW RATE, HYDRAULIC RESISTANCE, AREA AND PERIMETER
Q = postint(fem,’u’,’edim’,2); % Flow rate
R = 1/Q; % Hydraulic resistance
A = postint(fem,’1’,’edim’,2); % Area
L = postint(fem,’1’,’edim’,1); % Perimeter
% Write the result in the output file
fprintf(fil,’%4.2f % 7.4f % 7.4f % 7.4f\n’,[a,R/(8/pi),A/pi,L/(2*pi)]);

end; % End for-loop-i

fclose(fil); % close the output file
disp(’End of calculation’); % print final message

6.4 Exercises

Exercise 6.1
Hydraulic resistance for straight channels with different cross sectional shapes
Solve Eq. (2.18a) numerically by aid of COMSOL and verify the analytical results in
Table 3.1. Take advantage of the graphical user interface in COMSOL and the Poisson
equation module, located in the model navigator among the classical PDE modes.

Exercise 6.2
The influence of the boundary form
From the previous exercise it is clear that the velocity field approaches zero at the boundary
of the channel, Eq. (2.18b), but what is the asymptotic form and what is the influence of
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the boundary form? Contrast your observations with the velocity field for the equilateral
triangle which can be obtained analytically, see Section 2.4.4.

Exercise 6.3
Two hydraulic resistors connected in series
The aim is to reproduce Fig. 3.6 for different Reynolds numbers, see Eq. (3.44). You
should take advantage of the graphical user interface in COMSOL and the 2D Navier–
Stokes module for steady-state analysis. For the fluid properties you can for simplicity
use ρ = 1 and η = 1. For the height h1 and length L1 of R1 it is convenient to use
h1 = 1 and L1 = 4 and, e.g., h2 = 2 and L2 = 8 for R2. Furthermore, consider a parabolic
velocity profile at the inflow which is conveniently specified by vx = V04s(1−s) and vy = 0
where s ∈ [0; 1] on the inflow boundary. Choose ”normal flow/pressure” for the out-flow
boundary (p0 = 0 for convenience) and no-slip boundary elsewhere. By changing the
maximal velocity V0 you vary the Reynolds number, see Eq. (3.44).

Exercise 6.4
The Hagen–Poiseuille law
Use the geometry from the previous exercise to examine the break-down of the Hagen–
Poiseuille law when the Reynolds number is increased, i.e., compare the true pressure drop
∆p to the Hagen–Poiseuille law ∆p = (R1 + R2)Q. Hint: use

Q = w

∫ h1

0
dy vx = wV0h1

∫ 1

0
ds 4s(1− s) =

2
3
wh1V0, (6.23)

R1 = 12ηL1/(h3
1w) and R2 = 12ηL2/(h3

2w) , see Table 3.1, to show that

∆p = 8η

(
L1

h3
1

+
L2

h3
2

)
h1V0. (6.24)

Exercise 6.5
The hydraulic resistance of a rectangular bend
Create a microchannel with a rectangular (90◦) bend, a so-called L-shaped channel. In
analogy with Exercise 6.3 and Exercise 6.4 study the hydraulic resistance of this channel
and compare with the predictions of equivalent circuit theory.

Exercise 6.6
The hydraulic resistance of non-trivial geometries
Create microchannels with non-trivial geometries of your own choice, but keep the concept
”microfluidcs” in mind. Consider pure water as the liquid. Study the hydraulic resistance
as a function of velocity or Reynolds number, and observe the onset of non-linearities
(deviations from the Hagen–Poiseuille law). Is the inertial term in the Navier–Stokes
equation important in microfluidics?

Exercise 6.7
Diffusion in 1D
Consider a 1D tank of length L into which N0 particles are injected at one end, x = 0,
at time t = 0. Use the 1D diffusion model (transient analysis) in the COMSOL model
navigator to solve numerically the diffusion equation
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∂tc(x, t) = D ∂ 2
x c(x, t), for 0 < x < L. (6.25)

The initial condition should mimic c(x, t = 0) ≈ N0δ(x). What is the characteristic time
T0 it takes to form a spatially uniform concentration c(x, t = T0) ' N0/L? How does it
compare to the result obtained by dimensional analysis of the diffusion equation?

Exercise 6.8
Diffusion of a drop of ink in a circular 2D tank
Consider a circular tank of radius R in 2D. A tiny drop of ink with radius a ¿ R is
injected at the center at time t = 0. Use the 2D diffusion model (transient analysis) in
the COMSOL model navigator to solve numerically the diffusion equation

∂tc(r, t) = D ∇2c(r, t), for 0 < r < R. (6.26)

The initial condition should mimic c(r, t = 0) ≈ N0δ(r). What is the characteristic time
T0 it takes to form a spatially uniform concentration c(r, t = T0) ' N0/(πR2)? How does
it compare to the result obtained by dimensional analysis of the diffusion equation?

Exercise 6.9
Diffusion of a drop of ink in an arbitrarily shaped 2D tank
Repeat Exercise 6.8 but choose an arbitrary shape for the 2D tank. Furthermore, choose
any position r0 for the initial ink drop, c(r, t = 0) ≈ N0δ(r − r0). Try first to estimate
the characteristic time-scale T0 for reaching a spatially uniform concentration, and then
compare this with numerics. Consider a general way to estimate T0 for an arbitrary
geometry Ω with a boundary ∂Ω.

6.5 Solutions

Solution 6.1
To be added
In the next edition solutions to the exercises will be added.
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Chapter 7

Electrohydrodynamics

In many lab-on-a-chip applications the motion of the liquids or the solutes are controlled
electrically. Therefore it is highly relevant to study electrohydrodynamics, i.e., the coupling
of electromagnetism and hydrodynamics. Using this wide definition, electrohydrodynamics
comprises a wide range of phenomena such as the electrical properties of liquids per se,
electrochemistry, and electrokinetics.

One obvious way to couple electromagnetism to hydrodynamics is through the body
force ρelE in the Navier–Stokes equation, as we have seen in Eq. (1.49),

ρ
(
∂tv + (v·∇)v

)
= −∇p + η∇2v + ρ g + ρelE, (7.1)

for a liquid with a non-zero charge density ρel in an external electric field E.
We shall only deal with electromagnetic phenomena in the electro-static regime, i.e.,

we are disregarding any magnetic and radiative effects. In accordance with the continuum
hypothesis of Section 1.1.2 the governing equations are the Maxwell equations for con-
tinuous media, where the electric field E, the displacement field D, the polarization field
P, the electrical current density Jel, and the electrical potential φ all have been averaged
locally over their microscopic counterparts. The fundamental equations are:

∇×E = 0, (7.2a)
∇·D = ∇·(εE) = ρel, (7.2b)

D = ε0E + P = εE, (7.2c)
Jel = σelE. (7.2d)

Due to Eq. (7.2a) the E-field can be written as (minus) the gradient of a potential φ. If ε
is constant this gradient leads to the Poisson equation when inserted into Eq. (7.2b),

E = −∇φ, (7.3a)

∇2φ(r) = −1
ε

ρel(r). (7.3b)

These equations will be used in the following analysis of electrohydrodynamic phenomena
in microfluidics.

123
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7.1 Polarization and dipole moments

Polarization effects play an important role in microfluidics, so it seems appropriate to
review the basic theory of polarization. Consider a little particle, i.e., a biological cell or a
small part of some liquid, having the electric charge density ρel which occupies the region
Ω in space centered around the point r0. General positions inside the particle are denoted
r0 + r. If an external electrical field E is imposed on the system the ith component Fi of
electrical force Fel acting on the particle is given by

Fi =
∫

Ω
drρel(r0+r)Ei(r0+r) ≈

∫

Ω
drρel(r0+r)

[
Ei(r0)+rj∂jEi(r0)

]
= QEi(r0)+pj∂jEi(r0),

(7.4)
where we have introduced the charge Q and electric dipole moment p of the particle as

Q ≡
∫

Ω
dr ρel(r0 + r), (7.5a)

p ≡
∫

Ω
dr ρel(r0 + r) r. (7.5b)

As expected there is an electrical force when the charge Q of the region Ω is non-zero,
but note that a force is also present even when Q = 0 if both the dipole moment p
and the electric field gradient tensor ∇E are non-zero. The forces in the latter case are
denoted dielectric forces, and they will play the central role when in a later chapter we
are discussing dielectrophoresis.

A particularly simple example of a dipole moment is the two-point-charge dipole, or
in short the point dipole, sketched in Fig. 7.1(a). It is defined by the charge distribution

ρel(r0 + r) = +q δ
(

+ 1

2
d− r

)− q δ
(− 1

2
d− r

)
, (7.6)

which, when inserted into Eq. (7.5b), results in the dipole moment

p = qd. (7.7)

The polarization vector P(r0) appearing in Eq. (7.2c) is defined as the dipole moment
density in a small region Ω∗ surrounding r0 as the volume Vol(Ω∗) is taken to zero,

P(r0) = lim
Vol(Ω∗)→0

[
1

Vol(Ω∗)

∫

Ω∗
dr ρel(r0 + r) r

]
. (7.8)

The divergence ∇·P of the polarization can be interpreted as the polarization charge
density. This is shown by considering the arbitrarily shaped body Ω sketched in Fig. 7.1(b),
which contains a number of dipoles in the polarizable medium as well as some external
charges not part of the medium. In the bulk of the body the charges from the dipole
moments cancel each other, but at the surface part of the dipole charges goes outside the
body. Since d·nda describes the volume of a dipole qd sticking out of the surface element
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Figure 7.1: (a) The simple point dipole consisting of a charge +q separated from a charge
−q by the distance d. (b) The dipole moments (light gray ovals) and external charges
(white circles) inside a body Ω (dark gray). Polarization charge is left behind in the body
when the dipole moments sticks out at the surface of the body.

dda with unit normal vector n the amount of polarization charge Qpol left behind in the
body is given by

Qpol = −
∫

∂Ω
da n ·

( qd
Vol(Ω∗)

)
= −

∫

∂Ω
da n ·P = −

∫

Ω
dr ∇·P. (7.9)

This results holds for any region Ω so the polarization charge density ρpol can be defined
as

ρpol ≡ −∇·P, (7.10)

but this allows for a simple expression for the density ρext of the external charges:

ρext = ρtot − ρpol = ε0∇·E + ∇·P = ∇·(ε0E + P
)
. (7.11)

Thus by defining the displacement field as D ≡ ε0E + P leads to Eq. (7.2b), and we have
learned that ρel should not comprise the polarization charge density ρpol. For liquids and
isotropic solids the polarization is proportional to the electrical field, and the following
expressions introducing the susceptibility χ and the relative dielectric constant εr can be
used:

D = ε0E + P = ε0E + ε0χE = ε0(1 + χ)E = ε0εrE = εE. (7.12)

We let the topic of electric dipoles, polarization, and dielectric effects rest for now, but
shall return to it in a later chapter, when we study dielectrophoretic handling of charge-
neutral particles. In the following we shall instead focus on the electric effects related to
electric monopoles.

7.2 Electrokinetic effects

Having established the fundamental equations for electrohydrodynamics we move on to
the first example, electrophoresis. This is one of four electrokinetic phenomena that are
important in microfluidics. They all involve the motion of liquids relative to charged
surfaces. The terminology in use is
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Fdrag = −6πηa uep Fel = Ze E

uepZe

a

η

Figure 7.2: The principle of electrophoresis. A spherical particle of charge Ze and radius
a moves in a low-conductivity liquid with viscosity η under the influence of an applied
electrical field E. The motion becomes stationary at the velocity uep, when the Stokes
drag force Fdrag balances the electrical driving force Fel.

1. Electrophoresis — the movement of a charged surface (of say dissolved or sus-
pended material) relative to a stationary liquid induced by an applied electric field.

2. Electroosmosis — the movement of liquid relative to a stationary charged surface
(of say a capillary tube) induced by an applied electric field.

3. Sedimentation potential — the electric potential created when charged particles
are made to move relative to a stationary liquid.

4. Streaming potential — the electric potential created when a liquid is made to
move relative to a charged surface.

7.2.1 Electrophoresis

In the following we study how an applied electrical field E influences a spherical particle of
charge Ze and radius a in a stationary liquid of low electrical conductivity, say de-ionized
water. This is a particularly simple case of electrophoresis. The low conductivity of the
liquid implies the lack of ions that otherwise would have accumulated around the charged
particle and partly neutralized its charge, an effect known as electrical screening. There-
fore, as sketched in Fig. 7.2, the electric force is simply Fel = ZeE. From Section 4.7.1 we
know that on the short time-scale of a few µs, the charged particle reaches steady-state
motion, here the electrophoretic velocity uep, due to viscous drag. In this situation the
Stokes drag force Eq. (2.65), Fdrag = −6πηa uep, balances Fel,

Ftot = Fel + Fdrag = 0 ⇒ uep =
Ze

6πηa
E ≡ µion E. (7.13)

The dependence of the resulting drift velocity uep on particle charge and size makes
electrophoresis usable in biochemistry for sorting of proteins and DNA fragments. The
sample under consideration is dissolved in water and inserted in one end of a tube with
electrodes at each end. A voltage difference is applied to the electrodes, and the part of
the sample that arrives first at the other end of the tube contains the smallest and most
charged particles.
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ions at T = 25◦C H+ Ag+ K+ Li+ Na+ Br− Cl− F− I− OH−

mobility µion 36.2 6.42 7.62 4.01 5.19 8.09 7.91 5.70 7.96 20.6[
10−8 m2 (V s)−1

]

diffusivity Dion 9.31 - 1.96 1.03 1.33 2.08 2.03 1.46 2.05 5.30[
10−9 m2 s−1

]

Table 7.1: Experimental values for ionic mobility and diffusivity for small ions in aqueous
solutions at small concentrations. Note how H+ and OH− have significantly different
values due to their special modes of propagation by exchange of electrons with the neutral
water molecules.

7.2.2 Ionic mobility and conductivity

From Eq. (7.13) we see that the terminal velocity uep is proportional to the applied
electrical field E. The proportionality constant is called the ionic mobility µion,

µion ≡
Ze

6πηa
. (7.14)

This simple theoretical estimate based on a macroscopic continuum model is in remarkable
agreement with measured values of the ionic mobility of ions having a radius in the sub-nm
range and moving in water. The radius a, however, is not the bare ionic radius a ≈ 0.05 nm
but instead the somewhat larger so-called hydrated radius a ≈ 0.2 nm. This is due to the
fact that ions in aqueous solutions accumulates approximately one atomic layer of water
molecules. For Z = 1, η = 1 mPa s, and a = 0.2 nm we get

µion ≈ 4× 10−8 m2 (V s)−1. (7.15)

The experimental values for µion are shown in Table 7.1.
The ionic mobility µion is directly related to the ionic conductivity σion as seen by

combining Eqs. (7.2d) and (7.14),

µionE = uep =
1

Zecion

Jel =
σion

Zecion

E, (7.16)

so
σion = Zecionµion ≈ 10−3 S m−1, (7.17)

where the ionic concentration in the numerical example has been set to cion = 1 mM. The
numerical result is in good agreement with experimental values for σion.

7.3 The Debye layer near charged surfaces

The next electrohydrodynamic topic is a study of the electric potential and charge distri-
bution in an electrolyte, i.e., an aqueous solution of ions, in equilibrium near a charged
surface. The results obtained in this section will form the basis for our analysis in the
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Figure 7.3: (a) The ionic structure in thermal equilibrium of the Debye layer in an elec-
trolyte (light gray, x > 0) near a solid surface in the xy plane after charge transfer between
the solid (dark gray, z < 0) and the electrolyte has taken place. For 0 < z < s lies the
single-layer of immobile counter-ions, the Stern layer. For s < z < λD follows the diffuse
mobile layer of predominantly counter-ions. For z > λD the electrolyte is charge neutral.
(b) The simple continuous field model for the electric potential φ(z) in the Debye layer.
The potential at the Stern layer next to the surface takes the value φ(0) = ζ, while it
decays to zero in the bulk on the length scale given by the Debye length λD. (c) The
corresponding ionic densities c+(z) and c−(z) in the Debye layer.

following chapter of the electrokinetic effect called electroosmosis and its applications to
micropumps.

Consider an electrolyte in contact with a solid surface, either in the form of the walls
of the microfluidic channel in which the liquid flows or in the form of a particle suspended
in the liquid. Depending on the chemical composition of the solid and of the electrolyte
chemical processes at the surface will result in a charge transfer between the electrolyte and
the wall. As a result the wall and the electrolyte gets oppositely charged while maintaining
global charge neutrality. In Fig. 7.3(a) is sketched how the ions are distributed in the
electrolyte after the charge transfer has taken place.

7.3.1 The continuum model of the Debye layer

The basic physics is simple. The ions having the opposite charge of the solid, the counter-
ions, are attracted to the solid, while the other ions, the co-ions, are repelled. In case
of zero temperature a complete charge cancellation, i.e., perfect electric shielding, would
occur at the surface, however, at finite temperature thermal motion counteracts this be-
havior. The governing equation for the continuum description of the co- and counter-ionic
concentrations c±(r) comes from the thermodynamic expression for the chemical potential
µ(r), the free energy of the last added ion,

µ(r) = µ0 + kBT ln
(

c±(r)
c0

)
± Zeφ(r), (7.18)
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where µ0 and c0 is the chemical potential and ionic density, respectively, in the absence of
the electric potential. Note, that for simplicity that the ionic valences are opposite, ±Z.

Thermodynamic equilibrium implies that the chemical potential is constant throughout
the system, because if it were varying the system could gain energy by reorganizing its
constituents. We therefore have

µ(r) = const ⇒ ∇µ(r) ≡ 0 ⇒ kBT∇ ln
(

c±(r)
c0

)
= ∓Ze∇φ(r). (7.19)

In the following we assume, as indicated in Fig. 7.3, that infinitely far away from the
surface the two ionic concentrations approaches the same unperturbed value c0 and the
electrical potential goes to zero, while at the surface the potential takes the value ζ, known
in the literature as the zeta potential:

c±(∞) = c0, φ(∞) = 0, φ(surf) = ζ. (7.20)

With these boundary conditions Eq. (7.19) is easily integrated,

c±(r) = c0 exp
[
∓ Ze

kBT
φ(r)

]
, (7.21)

which results in the charge density ρel,

ρel(r) = Ze
[
c+(r)− c−(r)

]
= −2Zec0 sinh

[
Ze

kBT
φ(r)

]
. (7.22)

Expressing the charge density in terms of the potential using the Poisson equation (7.3b)
leads to a differential equation, the so-called Poisson–Boltzmann equation, for the electrical
potential,

∇2φ(r) = 2
Zec0

ε
sinh

[
Ze

kBT
φ(r)

]
, (7.23)

which can be solved numerically or in some special cases analytically. One analytical
solution can be obtained in the case of a planar surface in the xy plane at z = 0 and the
electrolyte occupying the z > 0 half-space. Due to translation symmetry in the xy plane
the problem becomes one dimensional and φ depends only on z, the direction perpendicular
to the surface plane. The resulting, so-called Gouy–Chapman solution, is

φ(z) =
4kBT

Ze
arctanh

[
tanh

(
Zeζ

4kBT

)
exp

(
− z

λD

)]
, (7.24)

where

λD ≡
√

εkBT

2(Ze)2c0

(7.25)

is the so-called Debye length to be derived in the next section. In Exercise 7.2 we prove
that Eq. (7.24) indeed is a solution to the Debye layer problem Eq. (7.23). For a standard
electrolyte with an ionic concentration of 1 mM = 1 mol/m3 and a dielectric constant
equal that of water, ε = 78ε0 we find the following value of λD at room temperature:

λD ≈ 9.5 nm. (7.26)
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7.3.2 The Debye–Hückel approximation for the Debye layer

To gain insight into the physics of the Debye layer and to build up our intuition, we shall
now study the so-called Debye–Hückel approximation. The approximation is valid when
the electrical energy is small compared to the thermal energy, i.e., in the

Debye–Hückel limit Zeζ ¿ kBT . (7.27)

In this limit, i.e., for zeta potentials much less than 26 mV at room temperature, we can
employ the Taylor expansion sinh(u) ≈ u in Eq. (7.23) and obtain the simple equation.

∇2φ(r) = 2
(Ze)2c0

εkBT
φ(r) ≡ 1

λ2
D

φ(r), (7.28)

which explains why λD, given by Eq. (7.25), is introduced.
A planar surface in the xy plane at z = 0 is a the first special case that we solve

analytical. Eq. (7.28) becomes the simple second order ordinary differential equation,

∂ 2
z φ(z) =

1
λ2

D

φ(z), (7.29)

which, given the boundary conditions Eq. (7.20), has the exponential solution,

φ(z) = ζ exp
[
− z

λD

]
(z > 0, single plate wall). (7.30)

The charge density ρel in the Debye layer corresponding to the potential Eq. (7.30) is
found by using the Poisson equation (7.3b),

ρel(z) = −ε∂ 2
z φ(z) = − εζ

λ2
D

exp
[
− z

λD

]
(z > 0, single plate wall), (7.31)

The ionic densities c−(z) and c+(z) are found directly from Eq. (7.21) in the Debye–Hückel
approximation by Taylor-expanding the exponential function,

c±(z) = c0

[
1∓ Zeζ

kBT
exp

[
− z

λD

]]
(z > 0, single plate wall). (7.32)

It is seen how the density of co-ions is suppressed near the surface while that of the
counter-ions are enhanced. This result is sketched in Fig. 7.3(c). Note that Eq. (7.32) has
been derived under the assumption limit Zeζ ¿ kBT , so the ionic densities are always
positive.

The infinite parallel-plate channel with surfaces at z = ±h/2 is the second special
case that we solve analytical. As before the potential φ only depends on z and the
Poisson–Boltzmann equation is given by Eq. (7.29), but now the boundary conditions are
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φ(±h/2) = ζ. As this problem is symmetric about z = 0 the solution involves cosh(x/λD)
rather than exp(−x/λD), and the resulting potential is seen to be

φ(z) = ζ
cosh

(
z

λD

)

cosh
(

h

2λD

) (−h

2
< z <

h

2
, parallel-plate channel). (7.33)

As above the charge density ρel, see Fig. 8.1, follows from the Poisson equation,

ρel(z) = − εζ

λ2
D

cosh
(

z

λD

)

cosh
(

h

2λD

) (−h

2
< z <

h

2
, parallel-plate channel). (7.34)

The circular-shaped channel with surfaces at radius r = a is the third and last analyti-
cal solution presented here. Employing the boundary condition φ(a) = ζ, the symmetry of
the problem, as in Eq. (2.32), dictates the use of cylindrical coordinates without angular
dependences. The Poisson–Boltzmann equation becomes

[
∂ 2

r +
1
r

∂r

]
φ(r) =

1
λ2

D

φ(r) (0 < r < a, circular channel). (7.35)

This is recognized as the modified Bessel differential equation of order zero, so the solution
involves the modified Bessel function of order 0,

φ(r) = ζ
I0

(
r

λD

)

I0

(
a

λD

) (0 < r < a, circular channel). (7.36)

The charge density ρel(r) follows from the Poisson and Poisson–Boltzmann equation as

ρel(r) = −ε∇2φ(r) = − ε

λ2
D

φ(r) = − εζ

λ2
D

I0

(
r

λD

)

I0

(
a

λD

) (0 < r < a, circular channel). (7.37)

7.3.3 Surface charge and the Debye layer capacitance

The Debye layer acts as an electrical capacitor since it accumulates electrical charge as a
response to the electrical potential difference ζ between the surface and the bulk. In the
following we study this property.

One way to obtain the capacitance of the Debye layer is by integrating the charge
density ρel(x) of Eq. (7.31) along the z direction from the surface at z = 0 to infinity,
x = ∞. The result qliq is the charge per area A that is contained in the liquid in the
direction perpendicular to any small area A on the surface,

qliq =
∫ ∞

0
dz ρel(z) =

∫ ∞

0
dz

[
− εζ

λ2
D

exp
[
− z

λD

]]
= − ε

λD

ζ. (7.38)
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Figure 7.4: (a) An electrolyte (light gray) occupying the space of height h between a set
of parallel-plate metallic electrodes (dark gray) . When applying a voltage difference 2ζ
between the two electrodes, a Debye layer of width λD builds up on each of them. (b) The
electrical equivalent diagram of the system shown in panel (a) consisting of one capacitor
CD for each Debye layer and one resistor R for the bulk electrolyte.

From this linear relation between charge per area and applied potential difference we
can immediately read off the capacitance per area CD of the Debye layer in thermal
equilibrium,

CD ≡ ε

λD

. (7.39)

Using λD = 9.6 nm and ε = 78ε0 we find the value

CD ≈ 0.073 F m−2. (7.40)

We can check the above result by calculating the surface charge per area qsurf that
is accumulated on the surface. This is done by using a standard Gauss box argument.
Imagine a flat box of surface area A and a vanishingly small thickness placed parallel to
the surface such that the surface lies inside the box. The symmetry of the problem dictates
that there are only a non-zero electric field through the area A on the liquid side of the
surface and, moreover, the electric field is perpendicular to this surface. Thus the total
charge inside the box is Aqsurf = εEA, and we have

qsurf = εE = −ε∂zφ(0) =
ε

λD

ζ. (7.41)

As expected, this result is exactly the opposite of charge per area in the liquid, so indeed the
Debye layer acts as a charge neutral capacitor, where the solid surface and the electrolyte
are the two ”plates” of the capacitor.

Since the Debye layer acts as a capacitor and since the electrolyte has a finite conduc-
tivity σel or resistivity 1/σel we should be able to ascribe a characteristic RC time τRC to
the system. We can get an estimate of this time scale by considering the setup sketched
in Fig. 7.4.

We consider an electrolyte sandwiched between a set of parallel-plate metallic elec-
trodes. The distance between the electrodes is denoted h. When one electrode is biased
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(a) (b)

Figure 7.5: (a) A picture of a polymer-based microfluidic channel. The channel forms a
meander with ten turns. A pair of intercalating gold electrodes are placed at the bottom
of the channel. The two contact pads are seen on the right-hand edge of the chip. (b) The
design of the electrode pair. One set of the electrodes are wide and the other narrow. This
spatially asymmetric design should induce a pumping effect when an AC voltage bias is
applied to the electrode pair. Courtesy the group of Bruus at MIC (2004).

by the voltage +ζ and the other by −ζ a Debye layer builds up on each of them. The
equivalent diagram of the system consist of a series coupling of one capacitor for each
Debye layer and one resistor for the bulk electrolyte. The RC time for this system is now
found as

τRC = RC =

(
h

σelA

) (
1
2

ε

λD

A
)

=
ε

2σel

h

λD

. (7.42)

The value of the RC time is found by using our standard values for the parameters:
λD = 9.6 nm, h = 100 µm, ε = 78ε0, and σel = 10−3 S/m,

τRC = 3.6 ms. (7.43)

For processes slower than 3.6 ms enough time is available for establishing the Debye layer.
However, the Debye layer cannot follow faster processes. In AC experiments this translates
into a characteristic frequency ωD of the Debye layer,

ωD =
2π

τRC

= 1.7× 103 rad/s. (7.44)

For frequencies higher than a few kHz the Debye layer is not established. In Fig. 7.5 is
shown a microfluidic channel fabricated at MIC with surface electrodes to study and to
utilize the RC time effects of the Debye layer in electrolytes. The hope is to design an
electrode system that can pump the electrolyte when an AC bias voltage is applied.

7.3.4 Electrophoresis and Debye layer screening

In Section 7.2.1 we studied electrophoresis in the case of a non-conducting liquid. This
case was simple since the charge of the particle suspended in the liquid did not suffer any
electrical screening. The opposite limit, where the liquid is a highly conducting electrolyte,
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is also a simple case. Here the particle charge is completely screened by the ions of the
electrolyte within a distance of the Debye screening length λD. Since the effective charge
of the particle in this case is zero it cannot move by electrophoresis, but only by dielectric
forces, a process called dielectrophoresis.

Let us solve the Debye layer problem for a charged spherical particle of radius a. The
problem is spherical symmetric, so the potential due to the particle can only depend on
the radial coordinate r, φ(r) = φ(r). The boundary conditions for φ(r) are

φ(a) = ζ, φ(∞) = 0. (7.45)

After employing the Debye–Hückel approximation, the Poisson–Boltzmann equation (7.23)
becomes

1
r2

∂r

(
r2 ∂rφ

)
=

1
λ2

D

φ (spherical polar coordinates), (7.46)

where the Laplace operator in spherical coordinates is simplified due to the lack of an-
gular dependence in the problem. This differential equation is solved by the standard
substitution ψ(r) ≡ r φ(r), since Eq. (7.46) then is transformed into the simpler equation

∂ 2
r ψ =

1
λ2

D

ψ (spherical symmetry), (7.47)

with the straightforward exponential solutions ψ(r) ∝ exp(±r/λD). Going back from ψ(r)
to φ(r) and employing the boundary conditions Eq. (7.45) yields the solution

φ(r) = ζ
a

r
exp

[
a− r

λD

]
(r > a, spherical symmetry). (7.48)

This solution, which has the form of a modified or screened Coulomb potential, corre-
sponds to a collection of counter-ions around the charged particle. This charge collection
is known as a screening cloud. Just a few times the Debye length λD away for the particle,
its charge cannot be observed, it is completely screened. For strong electrolytes, where
λD is very small, the originally charged particle becomes charge-neutral for all practical
purposes.

In the intermediate case of moderate Debye length, the electrophoresis problem be-
comes complicated. The motion of the particle distorts the screening cloud, which becomes
asymmetric, resulting in very complex interactions between the electrolyte, the screening
cloud and the particle. This topic is beyond the scope of these lecture notes.

In the case of very long Debye lengths, i.e., for non-conducting liquids, we recover the
simple un-screened charged particle studied in Section 7.2.1.

7.4 Exercises

Exercise 7.1
The dielectric force and the point dipole
Consider the electric force Fel on a particle.
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(a) Write the dielectrophoretic force in vector notation instead of the index notation
employed in Eq. (7.4).

(b) Verify the expression p = qd Eq. (7.7) for the point dipole, and write in vector
notation the dielectric force acting on it.

Exercise 7.2
The analytic solution for the Debye layer potential in 1D
In this exercise we prove that φ(x) given in Eq. (7.24) indeed is a solution to the Debye
layer problem for a planar charged surface.

(a) Use the following substitutions x ≡ λDx̃, φ ≡ ζφ̃ and α ≡ Zeζ/(kBT ) to show
that the Poisson–Boltzmann equation (7.23) can be written in the dimensionless form

∂ 2
x̃ φ̃(x̃) =

1
α

sinh
[
αφ̃(x̃)

]
. (7.49)

(b) Show that Eq. (7.49) can be rewritten by use of the substitution u(x̃) ≡ αφ̃(x̃) to
the form

u′′ = sinh(u) ⇒
(

1

2

[
u′

]2
)′

=
(

cosh(u)
)′

, u = αφ̃, (7.50)

where prime means derivative with respect to x̃.
(c) Use the boundary condition u(∞) = u′(∞) = 0 and the physical insight u′(x̃) < 0

to argue that Eq. (7.50) can be integrated once to yield the result

u′ = −
√

2 cosh(u)− 2 = −2 sinh
(1

2
u
)
, u = αφ̃, (7.51)

where the hyperbolic relation cosh(u) = 2 sinh2(u/2) + 1 has been used.
(d) Now introduce the new function v(x̃) = u(x̃)/2 = αφ̃(x̃)/2 with the boundary

conditions v(0) = α/2 and v(∞) = 0. Show that Eq. (7.51) can be rewritten and integrated
by separation of the variables v and x̃ as follows:

∫ v(x̃)

α
2

dv

sinh(v)
= −

∫ x̃

0
dx̃ ⇒

[
log

[
tanh

(v

2

)]]v(x̃)

α
2

= −x̃, v =
α

2
φ̃. (7.52)

(e) Show that Eq. (7.52) leads to following form of the final expression for φ̃(x̃),

φ̃(x̃) =
4
α

tanh−1

[
tanh

(α

4

)
e−x̃

]
. (7.53)

Exercise 7.3
The low-voltage limit of the Debye layer potential in 1D
Consider the Debye–Hückel approximation in the 1D case of Section 7.3.2.

(a) Show by Taylor expansion of Eq. (7.24) that the exact solution and the Debye–
Hückel approximation Eq. (7.30) agrees in the low-voltage limit Zeζ ¿ kBT .

(b) At which value of ζ is the relative error made in the Debye–Hückel approximation
10% of the exact result?
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Exercise 7.4
The analytic solution for the Debye layer potential inside a cylindrical channel
Prove that φ(r) given in Eq. (7.36) is the solution to the Poisson–Boltzmann equation
(7.35) for the straight channel with circular cross-section of radius a given the boundary
conditions φ(a) = ζ and ∂rφ(0) = 0 (no cusps in the potential along the center axis).

Exercise 7.5
Surface charge in the Debye layer of the parallel-plate channel
Determine within the Debye–Hückel approximation the surface charge density qsurf of
the parallel-plate channel of height h, and verify in analogy with the single-wall results
Eqs. (7.38) and (7.41) that qsurf is opposite to the charge density per area qliq in the
electrolyte.

Exercise 7.6
The simple model for the RC time of the Debye layer
Consider the equivalent circuit diagram in Fig. 7.4(b).

(a) Express the resulting capacitance in terms of CD.
Let Vext(t) be some externally applied voltage driving current I(t) from one wall to the
other. We assume that the intrinsic zeta potential is zero.

(b) Find the differential equation for I(t) and discuss the role of the RC-time τRC =
RC in the solution.

(c) Derive Eq. (7.42) and discuss the physical assumptions made and how the various
parameters influence τRC .

Exercise 7.7
The Debye layer potential of a charged sphere
Consider the charged sphere of radius a immersed in an electrolyte as described in Sec-
tion 7.3.4.

(a) Check that the Laplace operator in spherical coordinates, when no angular depen-
dence is present, is the one employed in Eq. (7.46).

(b) Verify that the substitution ψ(r) = r φ(r) indeed transforms Eq. (7.46) into
Eq. (7.47).

(c) Prove that the solution Eq. (7.48) is correct, and calculate the charge density ρel(r)
of the screening cloud surrounding the sphere.

(d) Compare the physical implications of the form of φ(r) in Eq. (7.48) with the case
of an un-screened charged particle.

7.5 Solutions

Solution 7.1
The dielectric force and the point dipole
Consider the electric force Fel on a particle.

(a) In vector notation Eq. (7.4) becomes Fel = QE + (p·∇)E.
(b) We first note that

∫
dr f(r)δ(r∗ − r) = f(r∗). Hence, inserting Eq. (7.6) into

Eq. (7.5b) yields p = q 1
2d− q

(− 1
2

)
d = qd. From (a) we then obtain Fel = q(d·∇)E.
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Solution 7.2
The analytic solution for the Debye layer potential in 1D
Only a few details needs to be filled in solving this exercise concerning Eq. (7.24).

(a) Using the substitutions x ≡ λDx̃, φ ≡ ζφ̃ and α ≡ Zeζ/(kBT ) is straightforward.
It remains to note the ∂x = (∂xx̃)∂x̃ = λ−1

D ∂x̃ , and thus ∂ 2
x = λ−2

D ∂ 2
x̃ .

(b) Using u(x̃) ≡ αφ̃(x̃) gives u′′ = sinh(u). Moreover
(

1
2 [u′]2

)′ = u′u′′, while
[cosh(u)]′ = sinh(u) u′, which upon division by u′ proves the implication in Eq. (7.50).

(c) Integration of Eq. (7.50) gives [u′]2 = 2 cosh(u) + const. At x̃ = ∞ this reads
[u′(∞)]2 = 2 cosh[αφ̃(∞)] + const = 2 + const, so the boundary condition u′(∞) = 0
requires const = −2. When isolating u′ the negative sign must be used to ensure u′ < 0.

(d) Using v = u/2, Eq. (7.51) becomes v′ = − sinh(v) or dv/dx̃ = sinh(v). Separation
of the variables leads to dv/ sinh(v) = dx̃, and employing the boundary condition v(0) =
α/2 leads to the integral Eq. (7.52). We note that

[
log[tanh(v/2)]

]′ =
[1/ tanh(v/2)][1/ cosh2(v/2)]v′/2 = 1/[2 sinh(v/2) cosh(v/2)]v′ = v′/ sinh(v), so Eq. (7.52)
is integrated correctly.

(e) Since
[
log(z)

]b

a
= log(a)− log(b) = log(a/b), Eq. (7.52) becomes

log
[
tanh(αφ̃/4)/ tanh(α/4)

]
= −x̃, and Eq. (7.53) results once φ̃ is isolated.

Solution 7.3
The low-voltage limit of the Debye layer potential in 1D
For s = Zeζ/(4kBT ) ¿ 1 we have the following Taylor expansions: tanh(s) ≈ s − s3/s
and arctanh(s) ≈ s + s3/s.

(a) Given the above, and noting that 0 < exp(−z/λD) < 1 for z > 0, a Taylor
expansion of Eq. (7.24) to lowest order in s becomes φ(z) ≈ 4kBT

Ze
Zeζ

4kBT e−z/λD = ζ e−z/λD .
(b) There is not a unique answer to the question, as the error of an approximating

function is not well defined. One possibility is to note that the Gouy–Chapman and the
Debye–Hückel solutions agree at z = 0 and z = ∞, so it is natural to study the function
values at z = λD, which is the only distinctive length scale of the problem, and here
e−z/λD is just 1

e . The Taylor expansion to third order in s becomes arctanh[tanh(s)/e] ≈
[tanh(s)/e] + [tanh(s)/e]3/3 ≈ [s − s3/3]/e + [s3/e3]/3 = [1 − s2(1 − 1/e2)/3] s/e. The
relative error is approximately below 10% when the first correction to the leading term is
below 10%, i.e., when s2(1− 1/e2)/3 < 0.1 or s < 0.6, implying ζ < 2.4kBT

Ze = 61 mV/Z.

Solution 7.4
The analytic solution for the Debye layer potential inside a cylindrical channel
If we introduce the dimensionless radial coordinate s = r/λD and thus ∂s = λD∂r, the
Poisson–Boltzmann equation (7.35) straightforwardly rewritten to Bessel’s modified differ-
ential equation of order zero: s2∂ 2

s ψ +s∂sψ−s2ψ = 0, where ψ(s) ≡ φ(λDs). The general
solution is the linear combination of the modified Bessel functions of order zero, I0 and
K0, of the first and second kind, respectively: ψ(s) = c1I0(s)+c2K0(s). Since K0(s) →∞
for s → 0, its derivative is also diverging, and this function must be discarded due to the
second boundary condition ∂sψ(0) = 0, i.e., c2 = 0. The first boundary condition requires
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ζ = φ(a) = ψ(a/λD) = c1I0(a/λD), and consequently c1 = ζ/I0(a/λD). In conclusion
ψ(s) = ζ I0(s)/I0(a/λD).

Solution 7.5
Surface charge in the Debye layer of the parallel-plate channel
Due to symmetry the two plates at z = ±h/2 have the same surface charge density, but
when using the Gauss box argument involving qsurf = εE ·n, the electric field E = −∂zφez

is multiplied with the surface normal n(−h/2) = +ez or n(h/2) = −ez. Using this and
∂s cosh(s) = sinh(s) we find

qsurf

(
± h

2

)
= ±ε∂zφ

(
± h

2

)
= ±

sinh
(
± h

2λD

)

cosh
(

h

2λD

) εζ

λD

= tanh
(

h

2λD

) εζ

λD

. (7.54)

The charge per area qliq in the liquid is found to balance the surface charges by using the
Poisson equation,

qliq = −ε

∫ h
2

−h
2

dz ∂zφ = −ε∂zφ
(h

2

)− (−ε)∂zφ
(− h

2

)
= −

[
qsurf

(
h

2

)
+ qsurf

(
− h

2

)]
. (7.55)

Solution 7.6
The simple model for the RC time of the Debye layer
Consider the equivalent circuit diagram in Fig. 7.4(b).

(a) The resulting capacitance per area A is given by the two Debye layer capacitors
in series, i.e., C/A = (1/CD + 1/CD)−1 = CD/2. So C = ACD/2.

(b) Let Vext(t) be the total voltage drop across the series coupling from left to right,
which also defines the positive direction of the current I(t). Using the capacitor equation
VD = qsurf/CD for the voltage drop across one Debye layer, and Ohm’s law VR = RI for the
voltage drop across the resistor, we find Vext = 2qsurf/CD +RI. Dividing by R and taking
the time-derivative we arrive at ∂tI + 1

τRC

I = ∂tVext/R, where we have used I = A∂tqsurf

and introduced τRC ≡ RC = RACD/2. It is seen that τRC is the characteristic time scale
for charging the Debye layers.

(c) We just found τRC = RACD/2. Since R = h/(Aσel) for a resistor of length h, area
A, and resistivity 1/σel, and since CD = ε/λD we obtain τRC = [h/(Aσel)][Aε/(2λD)] =
εh/(2σelλD). We see that fast charging occurs for small channel heights h, large Debye
lengths λD, and large conductivity σel. As was explicitly stated when discussing the
basic equation for the chemical potential Eq. (7.19), the main assumption leading to
the RC-model is that at each moment during the charging the Debye layer is close to
thermodynamic equilibrium.

Solution 7.7
The Debye layer potential of a charged sphere
Spherical polar coordinates are treated in Section A.3.2.

(a) For spherical symmetric scalar fields, where no angular dependence is present, only
the first term in Eq. (A.33) is non-zero, i.e., ∇2φ = 1

r2
∂r(r

2∂rφ) as used in Eq. (7.46).
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(b) First we write Eq. (7.46) as 1
r∂r(r

2∂rφ) = rφ/λ2
D = ψ/λ2

D, where φ(r) = ψ(r)/r
is used on the right-hand side. For the left-hand side we get r2∂rφ = r2(∂rψ/r − ψ/r2) =
r∂rψ−ψ. So 1

r
∂r(r∂rψ−ψ) = 1

r
(r∂ 2

r ψ + ∂rψ− ∂rψ) = ∂ 2
r ψ. In conclusion ∂ 2

r ψ = ψ/λ2
D.

(c) Eq. (7.48) yields φ(a) = ζ and φ(∞) = 0, thus fulfilling the required boundary
conditions. Moreover, multiplying the equation by r leads to ψ(r) = c exp(−r/λD), where
the constant is c = aζ exp(a/λD), which clearly is a solution to the Poisson-Boltzmann
equation (7.47). The charge density is given by

ρel(r) = −ε∇2φ = − ε

λ2
D

φ = − εζ

λ2
D

a

r
exp

[
a− r

λD

]
. (7.56)

(d) The potential around and un-screen charged particle is the well-known long range
Coulomb potential ζa/r. For the screened charged particle the range of the Coulomb
potential has been shortened by the appearance of the exponential factor exp[(a− r)/λD]
having the characteristic screening length λD.
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Chapter 8

Electroosmosis

Electroosmosis is a non-equilibrium effect, where a liquid is brought to move relative to
a charged surface by an applied external potential gradient ∇φext. Therefore, to obtain
a complete electrohydrodynamical transport theory, we need to supplement the diffusion-
convection equation (4.16) with an electrically induced current density Jel.

8.1 Electrohydrodynamic transport theory

The symbol Jel
α usually refers to the electrical current density of ion α, so we introduce

the symbol J̃el
α = Jel

α /(Zαe) for the particle current density of ion α having the valence Zα.
Likewise, the particle current densities due to convection and diffusion are the usual mass
current densities divided by the ionic mass mα, J̃conv

α = Jconv
α /mα and J̃diff

α = Jdiff
α /mα.

Combining Eqs. (4.16) and (7.2d) we obtain one of the governing equation for transport
in electrohydrodynamics, the so-called Nernst–Planck equation for the current density J̃α,

J̃α ≡ J̃conv
α + J̃diff

α + J̃el
α = cαv −Dα∇cα −

σel
α

Zαe
∇φ, (8.1)

where cα is the particle density, or concentration, of ion α. Naturally, in the spirit of linear
response theory, the gradients appearing in this equation (note that v can be thought
of arising from pressure gradients) relate only to pressure pext, concentration cext, and
potential φext applied externally on top of the equilibrium fields peq, ceq, and φeq,

p = peq + pext, (8.2a)

c = ceq + cext, (8.2b)

φ = φeq + φext. (8.2c)

The reason is that in equilibrium (in the center-of-mass system) there are no current
densities, even though the fields themselves may be non-zero. We have already used this
fact implicitly in Section 2.4.1, where for a horizontally placed channel the gravitational
force was balanced by minus the gradient of the hydrostatic pressure peq(z) = −ρgz, and
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Figure 8.1: The velocity profile v (dashed line and arrows) and the negative Debye layer
charge density profile ρ

eq
el (dark gray and full line) in an ideal electroosmotic (EO) flow

inside a cylindrical channel of radius a and positively charged walls (thick horizontal lines).
The EO flow is induced by the external potential difference ∆φext = ∆V resulting in the
homogeneous electric field Eext. Note how the velocity profile reaches the constant value
veo at a distance of a few times the Debye length λD from the walls. No pressure drop is
present along the channel in this ideal case.

in Section 7.3.1, where the electrical force in the Debye layer was balanced by minus the
gradient of a concentration-dependent pressure, see Eq. (7.19).

These considerations will be used in the following when analyzing the electroosmotic
effect, which is based on moving the ions in the Debye layer by external potential.

8.2 Ideal electroosmotic flow

The principle of electroosmotic (EO) flow is shown in Fig. 8.1. Two metallic electrodes are
situated at each end of a channel, in which charge separation at the walls has led to the
formation of an equilibrium Debye layer. When a DC potential difference ∆V = ∆φext is
applied over the electrodes the resulting electrical field Eext,

Eext ≡ −∇φext, (8.3)

exerts a body force ρ
eq
el Eext on the Debye layer, which begins to move and then by viscous

drag pulls the charge neutral bulk liquid along. If no electrochemical processes occur at the
electrodes the motion stops after a very short time (of the order µs) when the electrodes
are screened by the formation of a Debye layer around them. If, however, electrochemical
processes, e.g., electrolysis, can take place at the electrodes such a charge build-up is
prevented, and electrical currents can flow in the system and thus move the liquid by
viscous drag. In the following we derive an expression for the resulting electroosmotic
velocity field in the liquid.

Given the equilibrium charge density ρ
eq
el (r) of the Debye layer the Navier–Stokes

equation to be used for analyzing EO flows is

ρ
(
∂tv + (v·∇)v

)
= −∇pext + η∇2v − ρ

eq
el ∇φext. (8.4)
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Note that by assumption the external potential does not introduce any changes in the
charge density.

We define an ideal EO flow by the following four conditions: (i) the ζ potential is
constant along the wall, (ii) the electrical field is homogeneous, (iii) the flow is in steady-
state, and (iv) the Debye length is much smaller than the radius or half-width a of the
channel, λD ¿ a.

As the first explicit example we study the infinite parallel-plate channel with the pos-
itively charged walls placed parallel to the xy plane at z = −h/2 and z = h/2. The
external electrical field is applied in the negative x direction, E = −Eex, and the external
pressure gradient is put to zero. The symmetry of this ideal EO flow setup dictates the
following structure of the fields,

∇φext(r) = −E = E ex, (8.5a)
∇pext(r) = 0, (8.5b)

v(r) = vx(z) ex, (8.5c)

and only the x component of the steady-state Navier–Stokes equation is non-trivial,

0 = η∂ 2
z vx(z) +

[
ε∂ 2

z φeq(z)
]

E. (8.6)

The solution almost presents itself by rewriting this equation as

∂ 2
z

[
vx(z) +

εE

η
φeq(z)

]
= 0. (8.7)

Employing the boundary conditions

vx

(
± h

2

)
= 0, (8.8)

we obtain the solution
vx(z) =

[
ζ − φeq(z)

] εE

η
. (8.9)

The two-wall potential φeq(z) is given by Eq. (7.33), which combined with Eq. (8.9) gives

vx(z) =


1−

cosh
(

z

λD

)

cosh
(

h

2λD

)


 veo, (8.10)

where we have introduced the EO velocity veo defined as

veo ≡
εζ

η
E. (8.11)

This expression is analogous to electrophoresis and ionic mobility Eq. (7.13), and we quite
naturally define the EO mobility µeo as

µeo ≡
veo

E
=

εζ

η
. (8.12)



144 CHAPTER 8. ELECTROOSMOSIS

Typical values for EO flow are

ζ ≈ 100 mV, µeo ≈ 7× 10−8 m2 (Vs)−1, veo ≈ 1 mm s−1. (8.13)

For the ideal EO flow we obtain the simple velocity profile

v(r) ≈ veo ex = −µeo E, for λD ¿ 1

2
h. (8.14)

The corresponding flow rate, the so-called free EO flow rate Qeo, for a section of width w
is given by

Qeo =
∫ h/2

−h/2
dy

∫ w

0
dz vx(y, z) = veo wh, for λD ¿ 1

2
h. (8.15)

The exact expression (still within the Debye-Hückel approximation) valid for any value of
λD is left as an exercise for the reader.

Analytical results for an ideal EO flow within the Debye-Hückel approximation can also
be given for a cylindrical channel of circular cross-section with radius a. The equilibrium
potential φeq(r) is given by Eq. (7.36), and the velocity field has the structure v = vx(r)ex

and obeys the boundary conditions

∂rvx(0) = 0, vx(a) = 0. (8.16)

Otherwise, the analysis carries through exactly as for the infinite parallel-plate geometry
and we arrive at the result

vx(r) =


1−

I0

(
r

λD

)

I0

(
a

λD

)


 veo. (8.17)

Also here v ≈ veo ex for λD ¿ a, so the free EO flow rate becomes

Qeo =
∫ 2π

0
dθ

∫ a

0
dr rvx(r, θ) = veo πa2, for λD ¿ a. (8.18)

8.3 Debye layer overlap

Although we in the following mostly are dealing with ideal EO flow in the limit λD ¿ a,
we shall in this section briefly discuss what happens if the Debye length λD becomes
comparable with the transverse length scale a, and the Debye layers from various part of
the wall overlap at the center of the channel. According to our standard value Eq. (7.26)
for λD this will happen for a cylindrical channel with radius a of the order 10 nm. With
modern nanotechnology it is in fact possible to make such channels intentionally, and for
some fine-masked porous materials such dimensions actually occur in nature.

In Fig. 8.2(a) are shown three normalized EO flow profiles obtained by plotting vx(r)/veo

of Eq. (8.17) with the value λD/a = 0.01, 0.1, and 1. It is seen how, for small values of
λD/a, a flat nearly constant velocity profile is obtained as stated in the previous section.
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Figure 8.2: (a) The normalized EO flow profile vx(r)/vx(0) for a cylindrical channel of
radius a with three different values of the Debye length: nearly constant (λD/a = 0.01a),
rounded (λD/a = 0.1), and parabolic (λD/a = 1). (b) The maximal velocity in the
channel, vx(0) in units of veo as a function of λD/a. Note that vx(0)/veo ≈ 1 for λD/a < 0.1
while vx(0)/veo ≈ a2/(4λ2

D) for λD/a À 1.

As λD/a increases to 0.1, a rounded profile results still being flat near the center of the
channel. When λD becomes comparable to a the profile has changed into a paraboloid
shape. The latter result is easily verified by Taylor expanding Eq. (8.17) in a/λD, which
gives

vx(r) ≈ a2

4λ2
D

[
1− r2

a2

]
veo +O

(
(a/λD)2

)
. (8.19)

The expansion also shows that the EO flow profile gets heavily suppressed as λD is in-
creased beyond a as is evident from the pre-factor a2/λ2

D, see Fig. 8.2(b).
In conclusion, when the Debye screening length is large compared to the transverse

dimension of the channel, the screening of the charges on the wall becomes incomplete,
and the electrical potential does not vary much across the channel. In this case the Debye
layers reaching out from the wall overlap in the center preventing the maintenance of a
charge neutral bulk liquid. Together with the Navier–Stokes equation this further implies
that the velocity profile likewise does not vary much, and as a result the no-slip boundary
condition is felt strongly even at the center of the channel. The electroosmotic flow is
therefore strongly suppressed in the limit of Debye layer overlap, i.e., when λD ≥ a.

8.4 Ideal EO flow with back-pressure

In Section 8.2 we have seen how a non-equilibrium EO flow can be generated by applying an
electrical potential difference ∆φext along a channel where an equilibrium Debye exists. For
an ideal EO flow without any external pressure the flow rate Qeo is given in Eq. (8.18). In
this section we study how the flow rate depends on an externally applied pressure difference
∆pext, i.e., we study the capability of an EO microchannel to work as a micropump.

The setup is sketched in Fig. 8.3. A cylindrical channel of radius a and length L is
oriented along the x axis between x = 0 and x = L. As before the walls and the Debye
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Figure 8.3: The velocity profile v (dashed line and arrows) and the negative Debye layer
charge density profile ρ

eq
el (dark gray and full line) in an ideal electroosmotic (EO) flow

with back-pressure ∆pext = ∆p inside a cylindrical channel of radius a with positively
charged walls (thick horizontal lines). The EO flow is induced by the external potential
difference ∆φext = ∆V . Note how the flat EO flow profile veo from Fig. 8.1 now has a
parabolic dent from the superimposed back-pressure driven Poiseuille flow profile vp.

layer are positively and negatively charged, respectively. The external electrical potential
φext and pressure pext, both assumed to depend linearly on x, are applied as follows:

φext(x = 0) = 0 φext(x = L) = ∆V −∇φext = E = −∆V

L
ex (8.20a)

pext(x = 0) = 0 pext(x = L) = ∆p −∇pext = −∆p

L
ex (8.20b)

The Navier–Stokes equation for this highly symmetric problem, where v(r) = vx(r)ex,
reduces to the following linear differential equation for the x component:

0 = η∇2 vx(r) +
[
ε∇2φeq(r)

]∆V

L
− ∆p

L
, (8.21)

with the boundary conditions

vx(a) = 0, ∂rvx(0) = 0. (8.22)

The equation is solved by superimposing an EO flow vx,eo(r), Eq. (8.17), and a standard
Poiseuille flow vx,p(r), Eq. (2.33a) with opposite sign for ∆p,

vx(r) = vx,p(r) + vx,eo(r) (8.23a)

0 = η∇2 vx,eo(r)− ρext
el (r)

∆V

L
, vx,eo(a) = 0, ∂rvx,eo(0) = 0, (8.23b)

0 = η∇2 vx,p(r)−
∆p

L
, vx,p(a) = 0, ∂rvx,p(0) = 0. (8.23c)

The resulting velocity field of EO flow with back-pressure is therefore

vx(r) =


1−

I0

(
r

λD

)

I0

(
a

λD

)


 εζ

η

∆V

L
−

[
a2 − r2

] 1
4η

∆p

L
. (8.24)
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(a) (b)
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Figure 8.4: (a) The flow rate-pressure characteristic Q–p for an ideal EO flow with back-
pressure ∆pext. (b) The flow profile v in a cylindrical microchannel at maximal back-
pressure, the electroosmotic pressure peo, where the net flow rate is zero, Q = 0.

Note that the superposition procedure works because the high symmetry has rendered the
Navier–Stokes equation linear by removing the inertial term (v·∇)v.

For an ideal EO flow, i.e., in the limit λD ¿ a, the flow rate derived from Eq. (8.24) is

Q = Qeo + Qp = πa2veo −
1

Rhyd

∆p =
πa2εζ

ηL
∆V − πa4

8ηL
∆p. (8.25)

This yields the linear flow rate-pressure characteristic Q–p shown in Fig. 8.4(a). Two
points on the Q–p graph characterizes the capability of the EO microchannel to work as
a micropump. One is the free EO flow rate, (Q, p) = (Qeo, 0), obtained at zero back-
pressure, ∆pext = 0. The other is the zero-flow pressure, or electroosmotic pressure,
(Q, p) = (0, peo), defined as the back-pressure needed to exactly cancel the EO flow, i.e.,
Rhydpeo ≡ Qeo,

Qeo ≡
πa2εζ

ηL
∆V at free flow (Q, p) = (Qeo, 0), (8.26a)

peo ≡
Qeo

Rhyd

=
8εζ

a2
∆V at zero flow (Q, p) = (0, peo). (8.26b)

The flow profile when running the EO micropump at zero-flow is sketched in Fig. 8.4(b).
Typical values for Qeo and peo are found by using ζ = 0.1 V, a = 10 µm, L = 100 µm,

η = 1 mPa and ε = 78ε0,

Qeo

∆V
= 0.21 nL s−1 V−1, (8.27a)

peo

∆V
= 5.52 Pa V−1. (8.27b)

These numbers are not very high. It is clear from Eq. (8.26a) that a high flow rate in
a single-channel EO micropump is obtained with a high voltage drop ∆V , a high zeta-
potential ζ, a large radius a and a short channel length L. However, Eq. (8.26b) reveals
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that the pressure capability of a single channel scales as a−2. If a is chosen to be large
to secure a decent flow rate then the pressure capability is low and vice versa. A single
EO channel can therefore mainly be used in the free flow case, where, e.g., the flat EO
flow profile can be utilized to move concentration profiles in an undistorted manner along
a channel. If one is to construct a micropump based on EO flow more elaborate designs
are needed. This is discussed in the following sections.

8.5 The many-channel EO pump

An EO-based micropump with decent flow rate and pressure capabilities can be con-
structed by using a large number of narrow channels in a parallel coupling. Consider a
large number N of identical cylindrical channels of radius a, length L, and zeta-potential ζ.
When coupled in parallel all these channels experience the same external pressure pext, so
the pressure capability peo,N for the ensemble of channels is the same as for each individual
channel, while the free EO flow rate Qeo,N scales with the number of channels,

Qeo,N = NQeo = N
πa2εζ

ηL
∆V at free flow (Q, p) = (Qeo,N , 0), (8.28a)

peo,N = peo =
8εζ

a2
∆V at zero flow (Q, p) = (0, peo,N ). (8.28b)

Now, only the EO pressure peo,N depends on the radius a while the EO flow rate Qeo,N

depends on the total open area Aopen = Nπa2. The area is of the same order of magnitude
as the total cross sectional area Atot occupied with the channels including walls a voids
between the channels. For a closed packed hexagonal array of parallel cylindrical channels
of inner radius a and outer radius a+w, i.e., channels with a wall thickness of w, the total
area Atot of the ensemble of channels is given by

Atot =
2
√

3
π

(
1 +

w

a

)2
Nπa2 =

2
√

3
π

(
1 +

w

a

)2
Aopen. (8.29)

Although in principle it is possible to fabricate a many-channel EO pump by using
microtechnology, it is in practice not easy to fabricate a sufficiently high number of parallel
channels. But by using the so-called frits there is a way around this problem. A frit consists
of closely packed, sintered glass spheres with a diameter of the order 1 µm, which makes
it a porous material due to the voids between the spheres. Frits are widely used as filters
so they are produced commercially.

A frit can also be used as a many-channel EO pump. Instead of a regular array of
cylindrical channels, the frit contains a high number of channels of irregular shape and
size forming a percolation pattern through the frit. Despite the irregularities of the frit
channels they can still serve as EO flow channels.

In Fig. 8.5 is shown a frit-based EO micropump designed and fabricated in the group
of Bruus at MIC. The pump achieves Qeo ≈ 0.8 µL/s and peo ≈ 4 kPa when running at a
voltage of ∆V = 30 V. To stabilize the pump the electrodes have been separated from the
liquid flow by anion exchange membranes. These membranes only allow the passage of
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(a) (b)

Figure 8.5: (a) A frit-based EO micropump designed and built in the group of Bruus at
MIC. For ∆V = 30 V, the pump has Qeo ≈ 0.8 µL/s and peo ≈ 4 kPa, and it can run
steadily for hours. (b) The pump consists of layers of polymer sheets micromachined using
the laser ablation technique described in Fig. 2.4. The glass frit (gray hatched square)
is situated in the central layer. The platinum electrodes (spirals), where gas bubbles are
generated by electrolysis, are separated from the liquid flow (the arrow) by anion exchange
membranes (white and gray hatched layers), which only allow the passage of OH− ions.

OH−1 ions, and thus prevent the electrolytic gases generated at the electrodes to interfere
with the liquid flow. With the design the pump can run steadily for hours.

The shown prototype of the frit-based EO pump has the dimensions 20×20×10 mm3,
the size mainly being set by the commercially available frits, which are cylindrical with a
radius of 1.8 mm and a thickness of 2 mm, and the size of the screws holding it together.
It is of course the plan to integrate the pump directly in a lab-on-a-chip system, now that
the prototype has been tested successfully.

8.6 The cascade EO pump

While the many-channel EO pump solved the problem of obtaining a high pressure ca-
pability, we still have not gotten around the problem of the low nL/s flow rate indicated
by Eq. (8.27a). In many microfluidic applications a flow rate of µL/s is needed. With a
simple EO pump this can be achieved by applying high voltages of the order 1 kV. This
is of course doable but not very practical.

A solution to this problem is a so-called cascade EO pump, which consists of several
EO pump stages in series each with a zero voltage drop. A single zero-voltage EO pump
stage can be realized by breaking the translation symmetry along the flow direction. A
particularly simple example of this principle is shown in Fig. 8.6(a).

Consider two cylindrical channels of radius a1 and a2, respectively, but with the same
length L and zeta potential ζ. These two channels are joined together in series to form
one long channel of length 2L. All effects induced by the transition from the wide to
the narrow part of the resulting channel are neglected. The three positions of interest
are x = 0, L and 2L. The applied voltage φext(x) is going from 0 to ∆V and back to
zero at these three points, respectively. The pressure is pext(0) = 0, pext(L) = pc, and
pext(2L) = ∆p.
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We introduce the size ratio α ≡ a1/a2 and use channel 2 as our reference,

α ≡ a1

a2

, R∗
hyd ≡

8ηL

πa4
2

, Q∗
eo ≡

πa2
2εζ

ηL
∆V (8.30)

so that the hydraulic resistances and EO flow rates become

Qeo,1 = α2Q∗
eo, Rhyd,1 = α−4R∗

hyd, (8.31a)

Qeo,2 = −Q∗
eo, Rhyd,2 = R∗

hyd. (8.31b)

Note the minus sign for Qeo,2 due to the direction of the voltage drop. The Q–p charac-
teristic of the single-stage EO pump is found by noting that the flow rate Q in the two
sections must be identical due to mass conservation,

Q = Qeo,1 +
0− pc

Rhyd,1

= α2Q∗
eo − α4 pc

R∗
hyd

, (8.32a)

Q = Qeo,2 +
pc −∆p

Rhyd,2

= −Q∗
eo +

pc −∆p

R∗
hyd

. (8.32b)

Solving these equations with respect to the unknown flow rate Q and the central pressure
pc at x = L we get

pc =
1 + α2

1 + α4
R∗

hydQ
∗
eo +

1
1 + α4

∆p, (8.33a)

Q =
α2 − α4

1 + α4
Q∗

eo −
α4

1 + α4

∆p

R∗
hyd

. (8.33b)

From this we readily find the zero-flow pressure capability peo and the zero-pressure free
EO flow rate Qeo,

peo =
( 1

α2
− 1

)
R∗

hydQ
∗
eo, (8.34a)

Qeo =
α2 − α4

1 + α4
Q∗

eo. (8.34b)

This result implies that despite the zero total voltage drop along the single-stage EO
channel it nevertheless functions as an EO pump. The larger the difference is between the
two parts of the single-stage channel, i.e., the more the size ration α deviates from unity,
the larger is the EO effect.

In the special case α = 1 where the two parts of the single-stage EO pump are identical,
the pressure capability is zero simply because the EO flows in the two parts of the single-
stage channel are equal in size but opposite in direction. In the limit α À 1 the narrow
part 2 dominates the pump characteristic and we retrieve the results from the ideal EO
pump with a reversal of direction due to the reverse voltage drop. Likewise in the opposite
limit, α ¿ 1, the narrow part 1 dominate, but now without a reversal of flow direction.
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Figure 8.6: (a) A single stage (with two parts) in a cascade EO pump, which yields a
finite EO flow although the total voltage drop along the channel is zero. (b) The cascade
EO pump from Fig. 3.11(a) containing three identical stages. Each stage consists of ten
narrow channels in series with one wide channel, and the total voltage drop per stage is
zero.

A zero-voltage EO pump stage can also be constructed by letting channel 1 be a many-
channel EO pump and channel 2 a single-channel EO pump, as shown in Fig. 8.6(b). Let
us take N2 narrow channels of radius a1 = a2/N , and as before use channel 2 as our
reference:

α ≡ a1

a2

=
1
N

, R∗
hyd ≡

8ηL

πa4
2

, Q∗
eo ≡

πa2
2εζ

ηL
∆V. (8.35)

With this choice of geometry the two parts of the EO pump stage have the same area
available for flow, A = N2πa2

1 = πa2
2 , and the hydraulic resistances and EO flow rates

become

Qeo,1 =
1

N2
Q∗

eo, Rhyd,1 = N4R∗
hyd, (8.36a)

Qeo,N = Q∗
eo, Rhyd,N = N2R∗

hyd, (8.36b)

Qeo,2 = −Q∗
eo, Rhyd,2 = R∗

hyd. (8.36c)

Here subscript N refers to the ensemble of N2 parallel channels in section 1, while a single
channel here carries the subscript 1. The flow rate in the two sections now become

Q = Qeo,N +
0− pc

Rhyd,N

= Q∗
eo −

1
N2

pc

R∗
hyd

, (8.37a)

Q = Qeo,2 +
pc −∆p

Rhyd,2

= −Q∗
eo +

pc −∆p

R∗
hyd

. (8.37b)

From this we find in analogy with Eq. (8.33) that the central pressure pc and the flow rate
Q depend linearly on Q∗

eo and the back-pressure ∆p,

pc =
2N2

N2 + 1
R∗

hydQ
∗
eo +

N2

N2 + 1
∆p (8.38a)

Q =
N2 − 1
N2 + 1

Q∗
eo −

1
N2 + 1

∆p

R∗
hyd

. (8.38b)
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The zero-flow pressure capability peo and the zero-pressure free EO flow rate Qeo becomes,

peo =
(
N2 − 1

)
R∗

hydQ
∗
eo =

(
1− 1

N2

)
Rhyd,1Qeo,1, (8.39a)

Qeo =
N2 − 1
N2 + 1

Q∗
eo =

1− 1
N2

1 + 1
N2

Qeo,2. (8.39b)

It is thus seen that as the number of sub-channels in section 1 grows, the pressure capability
of the zero-voltage EO pump stage approaches that of a single narrow sub-channel in
section 1, while the free EO flow rate approaches that of the wide channel in section 2.

Regardless of how a single zero-voltage EO pump stage with a pressure capability of
∆p is realized, it is possible to join several such stages in series thus ended with a so-
called cascade EO pump, where the pressure capability is augmented by ∆p for each stage
added, while the free EO flow rate remains unchanged. Thus very efficient EO pumps
can be fabricated which only requires the same low voltage applied to the center of each
zero-voltage stage, see Exercises 8.6 and 8.7.

8.7 Exercises

Exercise 8.1
EO flow in an infinite parallel-plate channel
Consider the infinite parallel-plate channel of height h studied in Section 8.2 with the zeta
potential ζ on both walls, φeq(±h/2) = ζ. Check that the flow field vx(z) Eq. (8.10) is
a solution to the steady-state Navier–Stokes equation (8.6) fulfilling the no-slip boundary
conditions.

Exercise 8.2
The flow rate and pressure capability of an infinite parallel-plate EO pump
Consider an infinite parallel-plate EO pump of length L, width w and height h with the
zeta potential ζ on the top and bottom walls. The pumping liquid has the viscosity η.
The applied voltage drop along the pump driving the EO flow is ∆V , and it is assumed
to give rise to an homogeneous electrical field.

(a) Derive an expression for the zero-pressure free EO flow rate Qeo.
(b) Derive an expression for the zero-flow pressure capability peo.

Exercise 8.3
EO flow in a cylindrical channel with circular cross-section
Consider the cylindrical channel with circular cross-section of radius a studied in Sec-
tion 8.2 with the zeta potential ζ on the wall, φeq(a) = ζ. Write down the relevant
component of the Navier–Stokes equation and check that the flow field vx(r) Eq. (8.17) is
a solution to this equation fulfilling the no-slip boundary condition.

Exercise 8.4
The internal pressure in a single-stage zero-voltage EO pump
Consider the single-stage zero-voltage EO pump studied in the first half of Section 8.6.
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(a) Derive Eqs. (8.32a) and (8.32b) and show that they imply the expression for the
internal pressure pc Eq. (8.33a).

(b) Discuss pc in the free-flow case ∆p = 0 and in the zero-EO-flow case Q∗
eo = 0. Try

to relate the discussion to other known cases.

Exercise 8.5
The geometry of the many-channel EO pump
Consider the ensemble of N identical, parallel cylindrical channels of inner radius a and
wall thickness w forming a closed packed hexagonal lattice. Prove Eq. (8.29) relating
the open area Aopen available for fluid flow to the total cross-sectional area Atot of the
ensemble.

Exercise 8.6
A multi-stage EO cascade pump with a total voltage drop of zero
Consider as in Section 8.6 a multi-stage EO cascade pump consisting of M identical copies
of a single-stage zero-voltage EO pump coupled in series. The multi-stage pump is placed
between x = 0 and x = M 2L. The j-th stage lies between x = (j − 1) 2L and x = j 2L.
Each stage has the voltages zero at its ends and V at the center x = (j − 1

2) 2L. The
corresponding pressures are denoted pj−1 and pj at the ends and pc

j in the center.
(a) Find the pressure-flow rate characteristic of this multi-stage, porous EO pump,

i.e., express flow rate Q as a function of the total pressure drop ∆p = pM − p0 and the
parameters R∗

hyd, Q∗
eo, N , and M .

(b) Determine the EO pressure peo, i.e., pM − p0 when Q = 0, and the flow rate Qeo

in the case of free EO flow, i.e., when pM − p0 = 0.

Exercise 8.7
Experimental realization of a multi-stage EO cascade pump
Multi-stage EO pumps with 6 and 15 stages has been developed by Takamura et al.,
Electrophoresis 24, 185-192 (2003), see the figure below. Each stage consists of a ten-
channel EO pump followed by a single-channel EO pump as described in the second half
of Section 8.6.

Length

800 µm

(a) Use the experimental results to estimate the values of the EO mobility µeo and
the zeta potential ζ assuming that the liquid is pure water.

(b) Write down the values of the parameters L, N , M , R∗
hyd.
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(c) Calculate peo and Qeo (for a 6 and a 15 stage pump) and compare with the exper-
imental results.

8.8 Solutions

Solution 8.1
EO flow in an infinite parallel-plate channel
Using φ(z) from Eq. (7.33) as the equilibrium potential we can rewrite the velocity field
vx given in Eq. (8.10) as vx(z) = [1 − φeq(z)/ζ] veo = veo − (εE/η)φeq(z). When this
is inserted into the Navier–Stokes equation (8.6) the two terms containing φeq(z) cancel
and we arrive at ∂ 2

z veo = 0, which is true as veo is a constant. Moreover, the boundary
conditions are fulfilled since vx(±h/2) = [1− φeq(±h/2)/ζ] veo = [1− ζ/ζ] veo = 0.

Solution 8.2
The flow rate and pressure capability of an infinite parallel-plate EO pump
The magnitude of the electric field is given by E = ∆V/L.

(a) From Eq. (8.15) follows Qeo = veowh = εζwh
ηL ∆V .

(b) From Eq. (8.26b) follows peo = RhydQeo = 12ηL
wh3

εζwh
ηL ∆V = 12εζ

h2 ∆V .

Solution 8.3
EO flow in a cylindrical channel with circular cross-section
In analogy with Eq. (8.7) the non-linear term vanishes and only the x-component of the
Navier–Stokes equation is non-zero, (∂ 2

r + 1
r∂r)[vx(r) + (εE/η)φeq(r)] = 0. Using φ(r)

from Eq. (7.36) as the equilibrium potential we can rewrite the velocity field vx given in
Eq. (8.17) as vx(r) = [1 − φeq(r)/ζ] veo = veo − (εE/η)φeq(r). When this is inserted into
the Navier–Stokes equation above, the two terms containing φeq(z) cancel and we arrive
at (∂ 2

r + 1
r∂r)veo = 0, which is true as veo is a constant. Moreover, the boundary condition

is fulfilled since vx(a) = [1− φeq(a)/ζ] veo = [1− ζ/ζ] veo = 0.

Solution 8.4
The internal pressure in a single-stage zero-voltage EO pump

(a) This is done by straightforward algebra, no tricks is envolved.
(b) For ∆p = 0 we discuss three cases. (i) The two sections are identical, α = 1,

which makes Q = 0 and pc = R∗
hydQ

∗
eo = Rhyd,1Qeo,1 = Rhyd,2Qeo,2; both sections enters

on equal footing. (ii) Section 2 has a vanishing hydraulic resistance, α ¿ 1, which makes
Q = α2Q∗

eo = Qeo,1 and pc = α2R∗
hydQ

∗
eo = Rhyd,2Qeo,2; section 1 delivers the flow rate,

while section 2 creates the pressure. (iii) Section 1 has a vanishing hydraulic resistance,
α À 1, which makes Q = −Q∗

eo = Qeo,2 and pc = α−2R∗
hydQ

∗
eo = Rhyd,1Qeo,2; section 2

delivers the flow rate, while section 1 creates the pressure.
For Q∗

eo = 0 the circuit is just a normal series coupling of Rhyd,1 and Rhyd,2. The
total resistance is Rhyd = Rhyd,1 + Rhyd,2 = (1 + α−4)R∗

hyd so that Q = ∆p/Rhyd =
1

1+α−4 ∆p/R∗
hyd = α4

1+α4 ∆p/R∗
hyd in accordance with Eq. (8.33b). The central pressure is

then pc = Rhyd,1Q = α−4R∗
hyd × α4

1+α4 ∆p/R∗
hyd = 1

1+α4 ∆p in agreement with Eq. (8.33a).



8.8. SOLUTIONS 155

Solution 8.5
The geometry of the many-channel EO pump
When close packing N circular disks of radius a + w we note that each disk has six
neighbors. The centers of the central disk and any two neighbors that touches each other
form an equilateral triangle with side-length 2(a + w) and area

√
3(a + w)2. One third of

this area is designated to each of the three disks, and since the central disk participates
in six such areas, it takes up an area of 6 × 1

3 ×
√

3(a + w)2 = 2
√

3(a + w)2. Thus in
total the N disks take up an area Atot = 2

√
3(a + w)2N = (2

√
3/π)(1 + w/a)2 ×Nπa2 =

(2
√

3/π)(1 + w/a)2Aopen, since the open area of each disk is πa2.

Solution 8.6
A multi-stage EO cascade pump with a total voltage drop of zero
Due to mass conservation the flow rate Q is the same in each of the M stages of the pump.

(a) Using the single-stage result Eq. (8.38b), we can write the flow through the jth
stage of the multi-stage EO pump as Q = N2−1

N2+1
Q∗

eo − 1
N2+1

(pj − pj−1)/R∗
hyd. Adding

these M equations, utilizing
∑M

j=1(pj − pj−1) = pM − p0 = ∆p,
∑M

j=1 Q = MQ, and∑M
j=1 Q∗

eo = MQ∗
eo, and finally dividing by M , we arrive at the Q− p characteristics,

Q =
N2 − 1
N2 + 1

Q∗
eo −

1
M(N2 + 1)

∆p

R∗
hyd

. (8.40)

(b) From the result above we easily find the EO pressure cabability at Q = 0 to be
peo = M(N2 − 1)R∗

hydQ
∗
eo → MRhyd,1Qeo,1, for N → ∞. Likewise, the free EO flow rate

at ∆p = 0 becomes Qeo = N2−1
N2+1

Q∗
eo → Qeo,2, for N →∞.

Solution 8.7
Experimental realization of a multi-stage EO cascade pump
The experimental results of the pump is given in panel (b) of the figure in Exercise 8.7.
Note that the ordinate axis to the left is the zero-flow pressure capability peo, while the
axis to the right is the EO velocity veo.

(a) At the figure we read off (∆V, veo) = (25 V, 500 µm/s) while L = 800 µm, and
thus from Eq. (8.12)

µeo ≡
veo

E
=

veo

∆V/L
=

5× 10−4 m/s× 8× 10−4 m
25 V

= 1.6× 10−8 m2/(V s). (8.41)

From Eq. (8.12) we also get

ζ =
ηµeo

ε
=

10−3 Pa s× 1.6× 10−8 m2/(V s)
78.0× 8.85× 10−12 F/m

= 23.2 mV. (8.42)

(b) The parameters are: L = 800 µm, N =
√

10, M = 6 or 15, and with η = 10−3 Pas,
w = 5× 10−5, and h = 2× 10−5m we obtain

R∗
hyd =

12ηL

wh3(1− 0.63h/w)
= 3.21× 1013 Pa s/m3 = 32.1 Pa s/nL. (8.43)
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(c) At ∆V = 10 V the EO flow Qeo rate is found by multiplying the cross sectional
area with the observed EO velocity read from the graph:

Qeo = veowh = 2× 10−4 m/s× 5× 10−5 m× 2× 10−5 m = 0.2 nL/s. (8.44)

At the same voltage the pressure per stage is given by Eq. (8.39a) as

peo =
(
N2 − 1

)
R∗

hydQeo = 9× 3.21× 1013 × 2× 10−13 Pa = 58 Pa. (8.45)

For the 6-stage and 15-stage pump the predicted pressures are

peo(6) = 6× 58 Pa = 348 Pa, (8.46a)
peo(15) =15× 58 Pa = 870 Pa. (8.46b)

The measured pressures are 150 Pa and 350 Pa, i.e., a factor of 2.5 lower than predicted.
It may be due to a hydraulic leak or an uneven distribution of voltage drops that the
pump cannot sustain as high a pressure as predicted.



Chapter 9

Dielectrophoresis

Dielectrophoresis (DEP) is the movement of a charge neutral particle in a dielectric fluid
induced by an inhomogeneous electric field. This driving field can be either DC or AC.

We begin our analysis by considering a DC field E. Moreover, we shall exclusively
work with linear media such that the polarization P of the dielectric fluid is given by
Eq. (7.12)

P = ε0χ E, (9.1)

where χ is the susceptibility, and such that the induced dipole moment p of the dielectric
particle is

p = α E, (9.2)

where α is the polarizability.
According to Eq. (7.4) a dielectric force Fdip acts on a dipole moment p situated in

an inhomogeneous electric field E, i.e., a field with a non-zero gradient tensor ∇E,

Fdip = (p·∇)E. (9.3)

Before launching a rigorous analysis we shall build our intuition regarding induced
polarization by presenting some heuristic arguments.

9.1 Induced polarization and dielectric forces; heuristically

As sketched in Fig. 9.1 we consider a dielectric sphere with dielectric constant ε2 placed in
a dielectric fluid with dielectric constant ε1. An inhomogeneous electric field E is imposed
by charging a spherical electrode to the left and a planar electrode to the right.

From Eq. (7.12),
D = ε0E + P = ε0(1 + χ)E = εE, (9.4)

follows that when an electric field E is applied to a medium with a large dielectric constant
ε, the medium will acquire a large polarization P and consequently contain many dipoles p.
This is sketched in Fig. 9.1(a1), where the medium (light gray) with the smaller dielectric
constant ε1 contains a few polarization charges at its surfaces, while the sphere (dark gray)
with the larger dielectric constant ε2 > ε1 contains more charges at its surface.

157
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Figure 9.1: Sketch supporting the heuristic argument for the direction of the electric dipole
moment p induced in a dielectric sphere with dielectric constant ε2 by the inhomogeneous
electrical field E. The sphere is placed in a dielectric fluid with dielectric constant ε1
and the dielectric force acting on the sphere is denoted Fdip. (a1) The particle is more
polarizable than the fluid, i.e., ε2 > ε1. Here the fluid could be vacuum. (b1) The particle
is less polarizable than the fluid, i.e., ε2 < ε1. (a2) and (b2) The effective charges and
directions of p and Fdip corresponding to (a1) and (b1), respectively.

In Fig. 9.1(b1), the situation is reversed. Now the the medium (dark gray) has the
larger dielectric constant ε1 and many polarization charges at its surfaces, while the sphere
(light gray) has the smaller dielectric constant ε2 < ε1 and fewer polarization charges.

In Fig. 9.1(a2) and (b2) only the un-paired surface charges of panel (a1) and (b1) are
shown, which makes it easy to draw the direction of the dipole moment p of the dielectric
sphere. Since by construction the gradient of the electric field points to the region with
highest density of electrical field lines, i.e., to the left, it is also easy by use of Eq. (9.3) to
deduce the direction of the dielectric force Fdip.

For ε1 < ε2 the dielectric force pulls the dielectric particle towards the region of strong
E-field (to the left), while for ε1 > ε2 the particle is pushed away from this region (towards
the right).

9.2 A point dipole in a dielectric fluid

The first step in our more rigorous analysis is to determine the electrical potential φdip(r)
arising from a point dipole p = qd placed at the center of the coordinate system in a
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dielectric fluid with dielectric constant ε.

p = qd,





+q at +1

2
d,

−q at −1

2
d.

(9.5)

From an observation point r the distance to the dipole charges +q and −q are |r−d/2| and
|r + d/2|, respectively. The potential φdip(r) from a point dipole, where d ¿ r, therefore
becomes

φdip(r) =
+q

4πε

1
|r− d/2| +

−q

4πε

1
|r + d/2| ≈

1
4πε

p·r
r3

=
p

4πε

cos θ

r2
, (9.6)

where θ is the angle between the dipole p and the observation point vector r. If a given
potential φtot(r) contains a component of the form B cos θ/r2,

φtot(r) = B
cos θ

r2
+ φrest(r), (9.7)

it implies that a dipole of strength
p = 4πε B (9.8)

is located at the center of the coordinate system. This result will be used in the following
when calculating the induced dipole moment of a dielectric sphere placed in a dielectric
fluid.

9.3 A dielectric sphere in a dielectric fluid; induced dipole

In Fig. 9.2(a) is shown a dielectric fluid with dielectric constant ε1, which is penetrated
by a homogeneous electric field E0 = −∇φ0 generated by charging some capacitor plates
at x = ±∞. In spherical polar coordinates (r, θ, ϕ), using the x-axis and not the z-axis as
polar axis, the unperturbed potential φ0 is given by

φ0(r, θ, ϕ) = −E0 x(r, θ, ϕ) = −E0 r cos θ. (9.9)

A dielectric sphere of radius a and dielectric constant ε2 is then placed in the fluid as
shown in Fig. 9.2(b). The electric field polarizes the sphere resulting in a distortion of
the electrical field, which now becomes E = −∇φ, where the potential φ is given by one
function φ1 outside the sphere and another function φ2 inside,

φ(r, θ, ϕ) =

{
φ1(r, θ), for r > a,

φ2(r, θ), for r < a.
, (9.10)

where we notice that the system is rotation symmetric around the x axis so that φ(r) =
φ(r, θ) does not depend on the azimuthal angle ϕ.

The boundary conditions at the surface of the sphere, r = a, are the usual ones for
electrostatics: the normal component D ·er of D and the tangential component E ·eθ of
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Figure 9.2: (a) A dielectric fluid with a dielectric constant ε1 penetrated by an unperturbed
homogeneous electric field E0 = −∇φ0, where φ0(r, θ, ϕ) = −E0x = −E0r cos θ. (b) A
dielectric sphere of radius a and dielectric constant ε2 > ε1 placed in the dielectric fluid .
The electric field polarizes the sphere and a perturbed electric field E = −∇φ results.

E must be continuous across the surface of the sphere at r = a. So at r = 0, r = a, and
r = ∞ we have in total four boundary conditions:

φ2(0, θ) is finite, (9.11a)
φ1(a, θ) = φ2(a, θ), (9.11b)

ε1∂rφ1(a, θ) = ε2∂rφ2(a, θ), (9.11c)
φ1(r, θ) −→r→∞−E0r cos θ. (9.11d)

Both the fluid and the sphere are dielectric media without external charges, hence ρel = 0
in Eq. (7.3b) and the potential obeys the Laplace equation

∇2φ(r) = 0. (9.12)

The general solution to the Laplace equation in spherical coordinates with no dependence
on the azimuthal angle ϕ can be expressed in terms of the Legendre polynomials Pl as

φ(r, θ) =
∞∑

l=0

[
Alr

l + Blr
−(l+1)

]
Pl(cos θ). (9.13)

Because of the boundary condition Eq. (9.11d), which forces φ(r) to be proportional to
the first Legendre polynomial P1(cos θ) = cos θ it is reasonable to employ a trial solution
containing only the l = 1 terms in Eq. (9.13). Thus using boundary conditions Eqs. (9.11a)
and (9.11d) we arrive at a trial solution of the form

φ1(r, θ) = −E0r cos θ + B
cos θ

r2
, for r > a, (9.14a)

φ2(r, θ) = Ar cos θ, for r < a. (9.14b)

The remaining two boundary conditions Eqs. (9.11b) and (9.11c) yield two equations for
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the two unknown coefficients A and B,

−E0a +
1
a2

B = a A, (9.15a)

−E0 −
2
a3

B =
ε2
ε1

A, (9.15b)

which are easily solved to give

A =
−3ε1

ε2 + 2ε1
E0, (9.16a)

B =
ε2 − ε1
ε2 + 2ε1

a3 E0. (9.16b)

In conclusion, the trial solution works and results in the following solutions for the electrical
potentials φ1 and φ2:

φ1(r) = −E0r cos θ +
ε2 − ε1
ε2 + 2ε1

a3E0

cos θ

r2
= φ0(r) + φdip(r), for r > a, (9.17a)

φ2(r) =
−3ε1

ε2 + 2ε1
E0r cos θ =

3ε1
ε2 + 2ε1

φ0(r), for r < a. (9.17b)

Eq. (9.17b) shows that the potential φ2 inside the sphere is merely proportional to
the unperturbed potential φ0. However, Eq. (9.17a) reveals a more rich structure in the
potential outside the sphere in dielectric fluid: here the unperturbed potential has been
supplemented with a dipole potential φdip. In an applied electric field the dielectric sphere
acquires an induced dipole moment p, which according to Eqs. (9.7) and (9.8) has the
value

p = 4πε1
ε2 − ε1
ε2 + 2ε1

a3E0. (9.18)

The fraction in the pre-factor plays a significant role, and it has therefore been given a
name, the Clausius–Mossotti factor K(ε1, ε2),

K(ε1, ε2) ≡
ε2 − ε1
ε2 + 2ε1

. (9.19)

Note how the exact result in Eq. (9.18) confirms the heuristic picture: when the
sphere is more dielectric than the liquid, ε2 > ε1, the induced dipole moment p and the
unperturbed field E0 are parallel, while they become anti-parallel when the sphere is less
dielectric than the liquid, ε2 < ε1. We also see that the induced dipole moment vanishes
if the sphere and the fluid has the same dielectric constant ε2 = ε1.

This result Eq. (9.18) is very useful, since it provides us with a simple way to calculate
the dielectric forces acting on a dielectric sphere immersed in a dielectric fluid.
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9.4 The dielectrophoretic force on a dielectric sphere

The exact theory for the dielectric force Fdip on a dielectric sphere of finite radius a
is complicated. The reason is that while it is straightforward to calculate the induced
dipole moment p in an homogeneous external electrical field E0, as shown in the previous
section, the calculation becomes more involved in an inhomogeneous. In technical terms
we need to take higher multi-pole moments into account besides the dipole moment. If,
however, the radius a of the sphere is much smaller than the distance ` over which the
external electrical field varies we can still use Eq. (9.18) for the induced dipole. As shown
below, this follows from a Taylor expansion (here just taken to first order) of the external
electrical field E0(r) around the center coordinate r0 of the sphere,

E0(r) ≈ E0(r0) +
[
(r− r0)·∇

]
E0(r0) = E0(r0) +O(a/`). (9.20)

In this expression the value of the gradient term is of the order a/` since |r− r0| < a and
∇E0(r0) ≈ (1/`)E0(r0). Clearly, the induced dipole moment p could also depend on the
gradient ∇E0(r0), but this correction would also be suppressed by the same factor of a/`,
so Eq. (9.18) for the dipole moment is generalized to

p ≈ a34πε1K(ε1, ε2)E0(r0) + a4
[
f1(ε1, ε2)·∇

]
E0(r0) = a34πε1K(ε1, ε2)E0(r0) +O(a/`).

(9.21)
The vector function f1(ε1, ε2) appearing above is a generalized Clausius–Mossotti function.
Combining Eqs. (9.3), (9.20), and (9.21) we arrive at

Fdip(r0) =
[
p(r0)·∇

]
E0(r0) +O(a/`)

= 4πε1
ε2 − ε1
ε2 + 2ε1

a3
[
E0(r0)·∇

]
E0(r0) +O(a/`)

= 2πε1
ε2 − ε1
ε2 + 2ε1

a3∇
[
E0(r0)

2
]

+O(a/`). (9.22)

In the last equality we have used ∇[
E2] = 2E ·∇E, which is valid in electrostatics where

∇×E = 0 (see Exercise 9.1), valid also in AC if ` ¿ c/ω.
We shall use Eq. (9.22) in the following. This kind of dipole force is often called a

dielectrophoretic force FDEP, and using the Clausius–Mossotti factor it is written as

FDEP(r0) = 2πε1 K(ε1, ε2) a3∇
[
E0(r0)

2
]
. (9.23)

The direction of the DEP force is governed by the direction of the gradient of the square of
the electrical field. Since E0 only appears as E2

0 the sign of the DEP force is independent
of the sign of E0 but is given by the sign of the Clausius–Mossotti factor K(ε1, ε2).

9.5 Dielectrophoretic particle trapping in microfluidics

The dielectrophoretic (DEP) force FDEP can be used to trap dielectric particles suspended
in microfluidic channel. The principle is quite simple. An inhomogeneous electric field is
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Figure 9.3: (a) An example of DEP trap in a rectangular microfluidic channel of dimensions
L × w × h to catch dielectric particle suspended in a liquid flow with velocity profile
v. An inhomogeneous electric field E is created by applying a voltage difference ∆V
between the (semi-)spherical electrode at the bottom of the microchannel and the planar
electrode covering the top. Through the DEP force the bottom electrode will attract the
suspended dielectric particles. (b) The electrical field lines calculated by the method of
image charges for the potential φ(r). The spherical bottom electrode at r = 0 has the
potential φ(0) = ∆V . The planar top electrode of potential φ(hez) = 0 can be realized
by placing a mirror electrode with the potential φ(2hez) = −∆V at r = 2hez.

created in a microchannel by charging carefully shaped metal electrodes at the walls of
the channel. Dielectric particles suspended in the liquid flowing through the microchannel
will be attracted to the electrodes, and if the DEP force FDEP is stronger than the viscous
drag force Fdrag,

|FDEP| > |Fdrag|, (9.24)

the particles will get trapped by the electrodes.
To exemplify the technique and get some analytical expressions for the forces involved

we shall study the particularly simple geometry shown in Fig. 9.3.
The microfluidic channel is rectangular with length L, width w, and height h as in

Section 2.4.5, which in the flat and wide channel limit h ¿ w can be approximated by
the infinite parallel-plate channel of Section 2.4.6. The origin of the coordinate system is
placed at the center of the floor wall such that −L/2 < x < L/2, −w/2 < y < w/2, and
0 < z < h. A pressure drop of ∆p along the channel results in the flow profile v = vx(z)ex

Eq. (2.52),

vx(z) =
∆p

2ηL
(h− z)z = 6

(
1− z

h

) z

h
v0, (9.25)

where v0 is the average flow velocity, such that the flow rate is given by Q = v0 wh.
The dielectric particles suspended in the liquid has radius a. Neglecting finite-size

effects from the channel walls we can therefore approximate the drag force acting on a
sphere trapped at the position r by Eq. (2.65)

Fdrag ≈ 6πη a v(r). (9.26)

The inhomogeneous electric field is created by applying a potential φ = ∆V to a
(semi-)spherical metallic electrode of radius r0 situated at the floor at r = 0 and the
potential φ = 0 to a planar metallic electrode covering the ceiling at the plane r = h ez,
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see Fig. 9.3(a). We assume the liquid has a vanishing conductivity so that we can disregard
the formation of Debye screening layers near the electrodes. By the mirror image charge
method it is easy to construct the electrical potential φ(r) of this configuration,

φ(r) =
r0

|r| ∆V − r0

|r− 2hez| ∆V, (9.27)

which clearly by symmetry has φ(r = hez) ≡ 0. The trapping of particles takes place
close to the spherical electrode, i.e., |r| ¿ h. In this region the electrical field is given
approximately as

E(r) = −∇φ(r) ≈ r0∆V

r2
er, for r0 < |r| ¿ h. (9.28)

where er is the radial vector pointing away from the spherical electrode.
With the electrical field Eq. (9.28) at hand it is an easy task to derive an expression

for the DEP force Eq. (9.23)

FDEP(r) = 2πε1
ε2 − ε1
ε2 + 2ε1

a3∇
[

(∆V )2r2
0

r4

]
= −8π

ε2 − ε1
ε2 + 2ε1

a3r2
0

r5
ε1(∆V )2 er. (9.29)

The maximal DEP force Fmax
DEP is achieved when the particle is as close to the spherical

electrode as possible, r = rmin = r0 + a. If we denote the electrode radius by r0 = Γa, we
obtain the minimal distance

rmin = (1 + Γ)a, Γ ≡ r0

a
. (9.30)

From this follows an estimate for the maximal DEP force:

Fmax
DEP ≡ |FDEP(rmin)| = 8π

ε2 − ε1
ε2 + 2ε1

Γ2

(1 + Γ)5
ε1(∆V )2. (9.31)

The average flow velocity at the position z = r0 + a = (1+Γ)a follows from Eq. (9.25)

vx(r0 + a) = 6
(
1− (1 + Γ)

a

h

)
(1 + Γ)

a

h
v0 ≈ 6(1 + Γ)

a

h
v0. (9.32)

The drag force on a particle placed at r = rmin = r0+a follows from Eqs. (9.26) and (9.32),

|Fdrag(r0 + a)| ≈ 6πη a vx(r0 + a) = 36π(1 + Γ)
ηa2

h
v0. (9.33)

The largest average velocity vmax
0 which still allows for trapping of particles at the spherical

electrode is found from the condition Fdrag = Fmax
DEP, which results in

vmax
0 =

4
9

ε2 − ε1
ε2 + 2ε1

Γ2

(1 + Γ)6
hε1(∆V )2

ηa2
. (9.34)

To obtain trapping we need a liquid with a dielectric constant smaller than that of the
particle. Let us therefore use the liquid benzene with ε1 = 2.28 ε0 and η = 0.65 mPa s
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Figure 9.4: An actual DEP trap for biological cells designed at MIC in the group of
Wolff. (a) A cloud of yeast cells are caught at the center of the spiral electrode, where the
gradients are largest. (b) The cells are carried away by the liquid flow after being released
by removing the applied voltage on the electrodes.

and pyrex glass particles with ε2 = 6.0 ε0. The length scales are set to a = r0 = 5 µm and
h = 100 µm, while the applied voltage drop is ∆V = 10 V. With these parameters we find

vmax
0 = 3.0 cm/s. (9.35)

It is encouraging that this value is so high. From a theoretical point of view it ought to be
possible to design DEP traps for dielectric particles, and indeed this turns out to be the
case experimentally. In Fig. 9.4 is shown an actual DEP trap for biological cells designed
at MIC in the group of Wolff.

9.6 The AC dielectrophoretic force on a dielectric sphere

So far we have only considered DC voltages driving the DEP trap. There are, however,
many advantages in using AC voltage bias instead. One advantage is that any charge
monopoles (ions) in the system will not change their mean position being influenced by
AC electric fields. Another and related advantage is that the creation of permanent Debye
screening layers at the electrodes is avoided. A third advantage is that in the AC mode the
DEP trap will also work even if the liquid and the particle have non-zero conductivities,
σel,1 and σel,2. Finally, as we shall see, under AC drive the Clausius–Mossotti factor
depends on the driving frequency ω and it can even change its sign, which allow us to
control in situ whether the DEP force should be attractive or repulsive.

In the following we shall study a simple harmonic time-variation exp(−iωt) (meaning
that we must take the real part at the end). In that case the applied potential φ(r, t) and
the associated electrical field E(r, t) = −∇φ(r, t) have the forms

φ(r, t) ≡ φ(r) e−iωt, (9.36a)

E(r, t) ≡ E(r) e−iωt. (9.36b)
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When dealing with such harmonic time-dependencies, say,

A(t) = Re
[
A0e

−iωt
]
, (9.37a)

B(t) = Re
[
B0e

−iωt
]
, (9.37b)

where A0 and B0 are constant complex amplitudes, it is useful to know how to calculate
the time-average 〈A(t)B(t)〉 over one full period τ :

〈A(t)B(t)〉 ≡ 1
τ

∫ τ

0
dt A(t)B(t) =

1
2

Re
[
A0B

∗
0

]
. (9.38)

The proof of this expression, where B∗
0 denotes the complex conjugate of B0, is left as an

exercise for the reader.
We now move on to generalize the expression for the DEP force taking AC fields and

conductivity into account. The starting point is the general boundary condition for the
radial component Er(r, θ) = −∂rφ(a, θ) at the surface of the dielectric sphere,

ε1Er,1(a, θ, t)− ε2Er,2(a, θ, t) = qsurf . (9.39)

For perfect dielectrics the surface charge density qsurf is zero, as stated in Eq. (9.11c),
but now with non-zero conductivities and AC fields it becomes non-zero and in fact time-
dependent. The time-derivative of qsurf is given by charge conservation and Ohm’s law,

∂tqsurf(t) = Jr,1(a, θ, t)− Jr,2(a, θ, t) = σel,1Er,1(a, θ, t)− σel,2Er,2(a, θ, t). (9.40)

Taking the time-derivative of Eq. (9.39) using E-fields on the form Eq. (9.36b), substituting
Eq. (9.40) into the result, and multiplying with i/ω, we arrive at

(
ε1 − i

σel,1

ω

)
Er,1(a, θ) =

(
ε2 − i

σel,2

ω

)
Er,2(a, θ). (9.41)

We see that if we define a complex dielectric function ε(ω) as

ε(ω) ≡ ε− i
σ

ω
, (9.42)

then the boundary condition in the AC case Eq. (9.41) is seen to have the same mathe-
matical form as the boundary condition Eq. (9.11c) in the DC case. We can therefore use
the result Eq. (9.23) directly just using the complex dielectric functions in the Clausius–
Mossotti factor, which is where the boundary condition has been used,

FDEP(r0, t) = 2πε1
ε2(ω)− ε1(ω)
ε2(ω) + 2ε1(ω)

a3∇
[
E(r0, t)

2
]
. (9.43)

Note that the ε1 in the prefactor is the dielectric constant and not the dielectric function.
To obtain the real time-averaged DEP force 〈FDEP〉 for the complex result Eq. (9.43) we
use Eq. (9.38) with A(t) = K

[
ε1(ω), ε2(ω)

]
E(r0, t) and B(t) = E(r0, t). The result is

〈FDEP(r0, ω)〉 = 2πε1 Re
[

ε2(ω)− ε1(ω)
ε2(ω) + 2ε1(ω)

]
a3∇

[
E rms(r0)

2
]
. (9.44)
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Here we have introduced the usual root-mean-square value Erms = E/
√

2.
The expression Eq. (9.44) can be used to get a good first insight into the dielec-

trophoretic forces in the AC mode. One interesting result is to find the critical frequency
ωc at which the sign of 〈FDEP(r0, ω)〉 changes. This is found from Clausius–Mossotti
function by demanding Re

{
[ε2(ωc)− ε1(ωc)][ε2(ωc) + 2ε1(ωc)]

∗} = 0, which yields

ωc =

√
(σel,1 − σel,2)(σel,2 + 2σel,1)

(ε2 − ε1)(ε2 + 2ε1)
. (9.45)

Let us calculate a characteristic value for ωc for a biological cell, consisting mainly of the
cytoplasm, in water. We use the following parameters: σel,2 = 0.1 S/m and ε2 = 60.0ε0
for the cell, and σel,1 = 0.01 S/m and ε1 = 78.0ε0 for water. The value obtained is

ωc = 1.88× 108 rad/s. (9.46)

The frequency dependent DEP can be used to separate, e.g., living cells from dead cells and
cancer cells from normal cells. The different cells have different electrical properties, and
consequently they have different critical frequencies ωc determining at which frequencies
ω they are caught by the DEP electrode and at which they are expelled by it.

9.7 Exercises

Exercise 9.1
The gradient of E2 in electrostatics
In electrostatics ∇×E = 0. Show that this leads to

∇[
E2] = 2(E·∇)E. (9.47)

Hint: write the ith component of ∇[
E2

]
in index notation as ∂iEjEj and use that ∇×E=0

implies ∂iEj = ∂jEi for i 6= j.

Exercise 9.2
The potential arising from a point dipole
Consider the point dipole p = qd located at the origin of the coordinate system as defined
in Eq. (9.5). Prove Eq. (9.6) expressing the far-field potential φdip(r) due to this dipole.
Hint: perform a Taylor expansion using that d ¿ r.

Exercise 9.3
Two particular solutions to the Laplace equation
In case of a zero charge density the electrical potential φ(r) fulfills the Laplace equation
∇2φ = 0. Prove that φ1(r) = Ar cos θ and φ2(r) = B cos θ/r2 are solutions to this equation
in spherical coordinates (r, θ, ϕ), see Eq. (A.33).

Exercise 9.4
A dielectric sphere in a dielectric fluid
Consider the dielectric sphere in a dielectric fluid as defined in Section 9.3.
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(a) Prove that for the trial solution Eqs. (9.14a) and (9.14b), the boundary conditions
Eqs. (9.11b) and (9.11c) result in Eqs. (9.15a) and (9.15b) for the coefficients A and B.

(b) Prove that Eqs. (9.17a) and (9.17b) indeed provide a solution to the charge-free
electrostatic problem of a perfect dielectric sphere placed in a perfect dielectric fluid.

(c) Use the solution for φ2(r) to draw the electrical field lines inside the dielectric
sphere of Fig. 9.2(b) (where ε1 < ε2).

Exercise 9.5
A sphere with a small dielectric constant placed in a fluid
In Fig. 9.2(b) is shown the electric field lines in the case of a sphere with a dielectric
constant ε2 placed in a dielectric fluid with a smaller dielectric constant ε1 < ε2. Sketch
the electrical field lines in the opposite case ε1 > ε2.

Exercise 9.6
The simple dielectrophoretic (DEP) trap
Consider the simple DEP trap sketched in Fig. 9.3 and reproduced below.

(a) Discuss to which extend Eq. (9.27) in fact gives is a potential satisfying the bound-
ary conditions φ(r = r0) = ∆V and φ(z = h) = 0.

(b) Make a sketch of a sphere trapped near the spherical electrode. Include the forces
acting on the sphere, and discuss the validity of Eq. (9.34).

(c) Check the units in Eq. (9.34) and the value vmax
0 = 3.0 cm/s quoted in Eq. (9.35).
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Exercise 9.7
The time average of a product of time-dependent functions
Consider the real physical quantities A(t) and B(t) with harmonic time-variation,

A(t) = Re
[
A0e

−iωt
]
, B(t) = Re

[
B0e

−iωt
]
, (9.48)

where A0 and B0 are complex amplitudes. Prove that the time-average 〈A(t)B(t)〉 over
one full period τ is given by

〈A(t)B(t)〉 ≡ 1
τ

∫ τ

0
dt A(t)B(t) =

1
2

Re
[
A0B

∗
0

]
. (9.49)

Hint: rewrite A(t)B(t) using that Re
[
Z

]
= 1

2

[
Z + Z∗

]
for any complex number Z.

Exercise 9.8
The AC DEP force on a dielectric sphere
Consider the dielectric sphere in an AC electric field presented in Section 9.6.
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(a) Show how Eqs. (9.39) and (9.40) lead to the AC boundary condition Eq. (9.41) at
the surface of the sphere for the normal component of the electric field.

(b) Prove that the frequency-dependent Clausius–Mossotti factor becomes zero at the
critical frequency ω = ωc given in Eq. (9.45). Hint: rewrite the complex fraction so that
its denominator becomes real.

(c) Plot the frequency-dependent Clausius–Mossotti factor

K(ω) = Re
[

ε2(ω)− ε1(ω)
ε2(ω) + 2ε1(ω)

]
(9.50)

in the interval 0 < ω < 3ωc. Use the parameter values given after Eq. (9.45) for a biological
cell, consisting mainly of the cytoplasm, in water.

9.8 Solutions

Solution 9.1
The gradient of E2 in electrostatics
Using index notation we get

(∇[
E2

])
i
= ∂i(EjEj) = 2Ej∂iEj . We would like to exchange

the i and j indices on the last two terms. If i = j this is trivially true, but it is also true
for i 6= j if ∇×E = 0, since, e.g., 0 = (∇×E)x = ∂yEz − ∂zEy = 0. Thus we get

(∇[
E2

])
i
= ∂i(EjEj) = 2Ej∂iEj = 2Ej∂jEi =

[
2(E·∇)E

]
i
. (9.51)

Solution 9.2
The potential arising from a point dipole

We introduce the function f(s) = 1
|r+s| =

[
(r + s) ·(r + s)

]− 1
2 , where r is some constant

vector and s ¿ r. A first order Taylor expansion of f(s) around s = 0 becomes f(s) ≈
f(0) + s·∇sf(0). Since ∇sf(s) = −1

2
1

|r+s|3 2(r + s) we get f(s) ≈= 1
r − s·r

r3 . In terms of f

the dipole potential can be written as φdip = +q
4πεf

(− d
2

)
+ −q

4πεf
(
d
2

)
, which upon insertion

of the Taylor expansion for f becomes φdip ≈ +q
4πε

[
1
r − −d·r

2r3

]
+ −q

4πε

[
1
r − d·r

2r3

]
= 1

4πε
(qd)·r

r3 .

Solution 9.3
Two particular solutions to the Laplace equation
For S(r, θ, φ) = r cos θ Eq. (A.33) gives

∇2(r cos θ) =
1
r2

∂r(r
2 cos θ) +

1
r2 sin θ

∂θ(−r sin2 θ) =
2
r

cos θ − 2 sin θ cos θ

r sin θ
= 0. (9.52)

For S(r, θ, φ) = cos θ/r2 Eq. (A.33) gives

∇2
(cos θ

r2

)
=

1
r2

∂r

(−2 cos θ

r

)
+

1
sin θr2

∂θ

(− sin2 θ

r2

)
=

2 cos θ

r4
− 2 cos θ

r4
= 0. (9.53)
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Solution 9.4
A dielectric sphere in a dielectric fluid

(a) Using the trial solution Eqs. (9.14a) and (9.14b), in which all terms contain the
factor cos θ, the boundary conditions Eqs. (9.11b) and (9.11c) does not affect the angular
dependence. Thus all cos θ-factors are cancelled out, and we obtain Eq. (9.15a) by inserting
r = a. Eq. (9.15b) is obtained after taking the partial derivatives ∂r, which brings down
the powers 1 and −2, and then inserting r = a.

(b) Eqs. (9.17a) and (9.17b) are superpositions of functions φ that in Exercise 9.3 were
shown to be solutions of the Laplace equation ∇2φ = 0. Hence they describe a charge-free
electrostatic situation. The boundary conditions were checked in (a) above.

(c) Eq. (9.17b) shows that the potential φ2 inside the sphere is proportional to the
unperturbed potential φ0, and thus from E = −∇φ follows E2 = [3/(2+ ε2/ε1)]E0. Since
ε1 < ε2 the density of the resulting homogeneous field lines is smaller than that of E0.

Solution 9.5
A sphere with a small dielectric constant placed in a fluid
For ε1 > ε2 the liquid is more polarizable than the sphere and the field lines tend to
avoid entering the sphere, see the figure below. This could be a polymer sphere in water.��� ���
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Solution 9.6
The simple dielectrophoretic (DEP) trap
In the following we use the parameter values given after Eq. (9.34).

(a) Putting r = r0e and Taylor expanding in r0/h in the second term of Eq. (9.27)
yields

φ(r0e) =
r0∆V

|r0e |
− r0∆V

|r0e − 2hez| = ∆V − ∆V

|e − 2(h/r0)ez| ≈
[
1 +O

(r0

h

)]
∆V. (9.54)

With r0 = 5 µm and h = 100 µm we estimate the relative error to be r0/h = 5%.
(b) Consider a configuration where the sphere is lying on the bottom of the channel

to the right of the electrode and touching it. The DEP-force is then FDEP = −Fmax
DEPer,

where er is the unit vector pointing from the center of the electrode to the center of the
sphere. The drag force is Fdrag = Fdragex, while the normal force from the bottom of the
channel is FN = −FNez. In the x-direction the force balance become Fdrag = Fmax

DEP cos θ.
With a = r0 = 5 µm we find from Eq. (9.28) that the electric field varies from ∆V/r0

to ∆V/(9r0) across the sphere. Thus the electric field varies significantly on a length scale
corresponding to the diameter of the sphere, ` = 2r0, and the correction term a/` = 1/2
in Eq. (9.20) is in fact not small. If the Stokes drag law is valid the assumption for the
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drag force is not bad: With minor deviations of order r0/h = 5% the velocity field varies
linearly across the sphere, and the resulting drag force in well estimated by the average
value evaluated at center position of the sphere. However, as the sphere is close to the
wall, the assumptions of the walls being far away, see Section 2.6, is violated, and the
Stokes drag law is not valid. In conclusion, the estimate for the vmax

0 can only be trusted
as an order-of-magnitude estimate.

(c) From [ε1] = F/m follows [ε1(∆V )2] = (F/m)V2 = (FV)V/m = CV/m = J/m = N,
and since [ηa2] = Pa s m2 = N s, we arrive at

[vmax
0 ] =

m N
N s

=
m
s

. (9.55)

Solution 9.7
The time average of a product of time-dependent functions
Rewriting A(t) = 1

2 [A0e
−iωt + A∗0e

iωt] and B(t) = 1
2 [B0e

−iωt + B∗
0 eiωt] we find

〈A(t)B(t)〉 =
1
4τ

∫ τ

0
dt

[
A0e

−iωt + A∗0e
iωt

][
B0e

−iωt + B∗
0 eiωt

]
(9.56a)

=
1
4τ

∫ τ

0
dt

[
A0B

∗
0 + A∗0B0 + A0B0e

−i2ωt + A∗0B
∗
0 ei2ωt

]
(9.56b)

=
1
4
[
A0B

∗
0 + A∗0B0

]
=

1
2

Re
[
A0B

∗
0

]
. (9.56c)

Solution 9.8
The AC DEP force on a dielectric sphere

(a) A Gauss box argument at the surface of the sphere gives ε1E1 · n1 + ε2E2 · n2 =
qsurf. Here n1 and n2 are unit vectors pointing away from the surface into the liquid
and the sphere, respectively. Since the radial unit vector points from the sphere out
into the liquid, we get Eq. (9.39) with the proper signs. Taking the time-derivative of
this equation yields −iωε1Er,1 + iωε2Er,2 = ∂tqsurf. Combining this with Eq. (9.40) gives
−iωε1Er,1 + iωε2Er,2 = σel,1Er,1 − σel,2Er,2. Separation of 1-terms and 2-terms followed
by multiplication by i/ω leads to Eq. (9.41).

(b) The DEP-force is zero if the real part of the Clausius–Mossotti factor is zero.

Re
[

ε2(ωc)− ε1(ωc)
ε2(ωc) + 2ε1(ωc)

]
= Re

[
[ε2(ωc)− ε1(ωc)][ε2(ωc) + 2ε1(ωc)]

∗

[ε2(ωc) + 2ε1(ωc)][ε2(ωc) + 2ε1(ωc)]∗

]
= 0. (9.57)

Using ε(ωc) = ε− iσ/ωc, the real part of the enumerator becomes,

(ε2 − ε1)(ε2 + 2ε1) +
1
ω2

c

(σel,2 − σel,1)(σel,2 + 2σel,1) = 0, (9.58)

from which Eq. (9.45) follows.
(c) The Clausius–Mossotti function K(ω)

for the parameter values corresponding to a bi-
ological cell, ε2 = 60.0ε0 and σel,2 = 0.1 S/m, in
water, ε1 = 78.0ε0 and σel,1 = 0.01 S/m. The
characteristic frequency is ωc = 1.88×108 rad/s.
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Chapter 10

Magnetophoresis

Magnetophoresis (MAP) is the magnetic analogue to dielectrophoresis (DEP). Particles
possessing either an induced or a permanent magnetization M can be moved around
inside a microfluidic channel by applying an external, inhomogeneous magnetic field H.
Whereas the dielectric response of virtually all materials is strong enough to allow for
dielectrophoretic effects, the magnetic response is often too weak for most materials to
make magnetophoresis happen. In fact, one must often carefully prepare a given sample
by attaching magnetic particles before launching it into a MAP device. However, this
seemingly annoying feature is actually the strength of MAP, because it ensures full control
over which part of a sample is subject to MAP. In DEP devices the strong dielectric
response of both target and auxiliary particles can clutter the functionality of the device
and make the DEP device difficult to operate.

10.1 Magnetophoresis and bioanalysis

Magnetophoresis in microsystems is currently undergoing a rapid development and is al-
ready a strong tool especially for bioanalysis. On one hand, most biological samples are
non-magnetic and are not affected or destroyed by the relatively weak magnetic fields
employed in MAP, and on the other hand, it is possible to label cells or biomolecules
specifically with magnetic microbeads. This provides a versatile physical handle for ma-
nipulation and handling of biological samples.

A sketch of a typical bio-coated, magnetic microbead is shown in Fig. 10.1. The
main body is a non-magnetic polymer sphere, often made of polystyrene, containing a
large number of magnetic nanoparticles. The diameter of the polymer sphere is of the
order 1 µm to make it practical for handling, while the magnetic particles preferably have
a diameter near 10 nm. In magnetic particles of such small size all atomic magnetic
moments are aligned, but the direction of this total magnetic moment can rotate freely
under the influence of thermal fluctuations at room temperature, see Exercise 10.1. This
is known as superparamagnetism. The advantage of using superparamagnetic microbeads
is twofold. Firstly, such particles are have a vanishing average magnetic moment in the
absence of an external magnetic field, and secondly, they exhibit only a tiny hysteresis
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Figure 10.1: A typical polystyrene microbead used for magnetic separation in lab-on-a-
chip systems. The bead has a radius of about 1 µm contains inclusions in the form of
paramagnetic nanoparticles. The surface is coated with a specific antibody chosen to
capture a given target antigen (white square) and not to interact with any other antigens
(triangle, pentagram, and circle).

effect, meaning the average magnetic moment returns to the value zero after removing
any applied external magnetic field. Consequently, such particles are ideal for capturing
by turning on an external magnetic field, and for releasing by turning off the magnetic
field.

The advantage of using polymers as the main body is that it allows for coating the
microbead with specific biomolecules. Through well-controlled biochemical processes the
surface can by coated with carefully chosen antibodies, DNA strings or RNA. Once coated
with such biomolecules the microbead can act as a highly specific capture probe for specific
target molecules. An example of this capture selectivity is sketched in Fig. 10.1, where a
surface coating of a specific antibody allows for capturing a specific target antigen, leaving
all non-matching antigens untouched.

Magnetic separation of biomolecules can be implemented in lab-on-a-chip systems as
the one sketched in Fig. 10.2. Imagine a microfluidic channel with magnetic elements
placed at the bottom wall. These elements can either be on-chip electromagnets or mag-
netic material, magnetized by external electrical currents or magnetic fields, respectively.
When superparamagnetic, bio-coated microbeads are flushed through the channel they
will be attracted by magnetophoretic forces to the magnetic elements if these are turned
on. Once reaching the magnetic elements the beads are immobilized and the antibodies
on their surfaces will form a layer of capture probes ready to bind with the proper antigen.
If a sample containing many different antigens then is flowing through the microchannel,
only the specific antigen matching the antibody on the microbeads will be captured. If
the channel is flushed with a rising buffer after the capturing, we have achieved an up-
concentration of the target antigen. This target sample can be released by turning off the
magnetic elements, flushing out the sample and collecting it at the outlet.
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(a) (b)

(c) (d)

(e) (f)

Figure 10.2: The principle in magnetic separation for bio-sampling using magnetic beads
flowing in a microfluidic channel. (a) A Poiseuille flow (light gray) carrying magnetic
microbeads (dark circles) coated with suitable antibodies (attached Y-shapes). (b) Immo-
bilization of the magnetic antibody-beads by activating magnets (black rectangles) placed
in the bottom wall (gray). (c) Introduction of sample containing the target antigen (white
squares) and a number of other antigens (triangles, circles and pentagrams). (d) Capture
of the target antigen by the immobilized antibody-beads. (e) Thorough rinsing. (f) Re-
lease of the target sample by de-activating the magnets (now white rectangles) followed
by collection at the microchannel outlet to the right.

10.2 Magnetostatics

The theory of magnetophoresis has many similarities with that of dielectrophoresis. The
starting point is the magnetostatic part of Maxwell’s equations, i.e., assuming only sta-
tionary current densities and neglecting all time derivatives otherwise appearing. The two
magnetostatic Maxwell equations are

∇ ·B = 0, (10.1a)
∇×B = µ0Jtot = µ0Jext + µ0Jmag, (10.1b)

where µ0 = 4π × 10−7 H/m is the magnetic permeability of vacuum, and where Jtot,
Jext and Jmag all are stationary current densities; Jtot the total current density, Jext all
external transport current densities running in conductors, and Jmag the current densities
bound to magnetic material in the form of atomic/molecular current loops and quantum
mechanical spins. This division of the total current density is analogous to the division of
the total charge density into external and polarization charge densities, see Eq. (7.11).
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In analogy with the dipole moment p = qd of equation Eq. (7.7) the magnetic dipole
moment m for a circulating magnetization current Imag enclosing a flat area A with the
surface normal n is given by

m = ImagA n. (10.2)

In analogy with the polarization P of Eq. (7.8) the magnetization M is defined as the
magnetic moment density,

M(r0) = lim
Vol(Ω∗)→0

[
1

Vol(Ω∗)

∫

Ω∗
dr m(r0 + r)

]
. (10.3)

A careful mathematical analysis shows that the magnitization M is related to the density
Jmag of the circulating magnetization current as

Jmag = ∇×M; (10.4)

an expression which is the magnetic analogue of the relation Eq. (7.10) between the electric
polarization P and the polarization charge density ρpol. Note that the analogy between
magnetization and electric polarization is not perfect, as the source to M is the vector
Jmag, while the source to P is the scalar ρpol. But we nevertheless continue to point our
the similarities between the magnetic and the electric theory. Just as E and P could be
combined to give the useful concept of the D field, it is beneficial to combine the magnetic
induction B and the magnetization M in the definition of the magnetic field H as

H =
1
µ0

B−M. (10.5)

By inserting Eq. (10.4) into Eq. (10.1b) we finally obtain

∇×H = Jext, (10.6)

which states that the source of the H field is the external current densities.
The last fundamental concept to be introduced here in connection with magnetostatics

is the magnetic susceptibility tensor χ defined as

χ ≡
(∂M

∂H

)
V,T

. (10.7)

For isotropic materials M and H are parallel, and χ becomes a scalar. Furthermore, in
some cases the relation between M and H is linear, and we get the most simple expressions,
which are analogous to Eq. (7.12),

M = χ H, (10.8a)

B = µ0

(
H + M

)
= µ0

(
1 + χ

)
H ≡ µ0µrH ≡ µ H. (10.8b)

Here the coefficients µ and µr are called the permeability and relative permeability, re-
spectively.
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10.3 Basic equations for magnetophoresis

We are going to study which magnetic forces act on a magnetizable body when this is
placed in an external magnetic field. Consider a given external magnetic field charac-
terized by Hext before the magnetizable object enters. When the object then is placed
in the magnetic field, it acquires an magnetization M, and this in turn generates extra
contributions to the magnetic field, which therefore changes from Hext to H.

To find the magnetic force F on the magnetizable object is not entirely simple. We
shall not go through the derivation here, but just mention that a safe way to proceed is
to consider the free energy of the system. The differential of the free energy density is
generally given by −B·dH. From this the change δF in total free energy F upon a small
spatial displacement δr in the system can be calculated. Now, free energy and force are
in general related by the differential relation

δF = −F·δr. (10.9)

Carrying out this analysis results in the following expression for the force F on the
magnetizable object, valid if the fields are static, ∇ × Hext = 0, and the body is non-
conducting:

F = µ0

∫

body
dr (M·∇)Hext, for ∇×Hext = 0. (10.10)

This expression with its underlying assumptions is the basis for understanding magne-
tophoresis.

To be a little more specific we consider, in analogy with the dielectric treatment in
Section 9.3, a homogeneous, isotropic, and non-conducting sphere of radius a and perme-
ability µ. As ∇ × Hext = 0 it is possible like in Eqs. (7.2a) and (7.3a) to introduce a
magnetic potential φm such that

Hext = −∇φm. (10.11)

The analogy to the dielectric case is now very close, and the resulting expression for the
magnetization M of the sphere after being placed in the homogeneous field Hext is given
by

M = 3
µ− µ0

µ + µ0

Hext. (10.12)

Note how closely this expression resembles Eq. (9.18) for the induced dipole moment in
electrostatics. The analogy is perfect when we consider the resulting MAP-force FMAP,

FMAP(r0) = 2πµ0 K(µ0, µ) a3∇
[
Hext(r0)

2
]
, (10.13)

where even the Clausius–Mossotti factor from Eq. (9.19) reappears. Note how the MAP-
force is dependent on the gradient of the square of the magnetic field, just as the DEP-force.

In conclusion we can say, that force expressions applying to magnetophoresis and
dielectrophoresis can be very similar or even in special cases identical. However, it is
important to bear in mind that often there will be substantial deviations between the two
descriptions, primarily due to the intrinsic non-linear nature of magnetic materials.
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(a) (b)

Figure 10.3: (a) Design mask for a 400 µm wide and 14 mm long channel with 30 magnetic
elements along each side of the channel. (b) The silicon-based lab-on-a-chip system with
the magnetic permalloy elements at the side and a pyrex lid for sealing. The 2 mm wide
inlet and outlet is seen at each end of the device. Courtesy the group of Fougt Hansen at
MIC.

10.4 Magnetophoretic lab-on-a-chip systems

We end this short introduction to magnetophoresis by showing one explicit example of a
magnetophoretic lab-on-a-chip system fabricated in the group of Fougt Hansen at MIC.

In Fig. 10.3(a) is shown the the design mask for fabricating a magnetic microfluidic
separation chip. The core of the design is the 14 mm long, 400 µm wide and 80 µm high
channel with 30 magnetic element placed along each side. At each end of the channels are
placed an inlet and an outlet reservoir with diameters of 2 mm.

The finished device is seen on the picture in Fig. 10.3(b). The main structure is
fabricated in silicon. The magnetic elements are filled with permalloy (20% Fe and 80%
Ni) by electroplating before sealing the channel with a pyrex lid.

To operate the device it is placed in the middle of the gap of an electromagnet and
a syringe pump is attached by teflon tubes. When the electromagnet is turned on the
permalloy elements are magnetized and strong field gradients are created in the channel.

Through an inlet valve solutions of superparamagnetic beads with a diameter of 1 µm
are led through the channel in a Poiseuille flow with a maximum speed around 1 mm/s.
The MAP-force drags the beads to the side of the channel and capture them at the edges
of the magnetic elements.

In Fig. 10.4 is seen a micrograph of the first 10 elements (top panel) and the next 10
elements (bottom channel). The captured beads are seen as a dark gray shadow at the
end of the magnetic elements (light gray rectangles). The number of beads being caught
decreases along the channel. The largest amount of captured beads are seen on element
number 1.

So far the system has mainly been run with magnetic beads without any bio-coating.
The system has now been successfully tested and is ready to be applied for more bio-related
investigations.
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Figure 10.4: Micrograph of magnetic bead capture by magnetophoresis in a 400 µm wide
and 80 µm high silicon-based microchannel with a pyrex lid. The magnetic elements (light
rectangles) are made of permalloy. Courtesy the group of Fougt Hansen at MIC.

10.5 Exercises

Exercise 10.1
Superparamagnetic nanoparticles
In the simplest cases the relaxation time τ for the net magnetization of a superparamag-
netic particle follows an activation law,

τ = τ0 exp
(KV

kBT

)
, (10.14)

where the pre-exponential factor is τ0 = 10−12 − 10−10 s, V is the volume of the particle,
and K ≈ 104 J/m3 is the so-called anisotropy energy density.

Argue why particles need to have a radius of about 10 nm or smaller to exhibit super-
paramagnetism at room temperature.

Exercise 10.2
The magnetic moment of a square current loop
Prove that the mechanical torque τ is given by

τ = IAn×B (10.15)

for a thin wire formed as a square closed loop of side length L in the positive direction,
carrying a circulating current I, and placed in the horizontal xy plane, when a magnetic
field B is present inclined an angle θ relative to the surface normal of the area A = L2

enclosed by the loop. Hint: use that the force F on a thin wire of length L carrying a
current I is given by F = BIL eL × eB, where eL and eB are unit vectors indicating the
direction along the wire and magnetic field, respectively.

Exercise 10.3
The rotation of M
Prove Eq. (10.6) from the preceding part of Section 10.2.
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10.6 Solutions

Solution 10.1
To be added
In the next edition solutions to the exercises will be added.



Chapter 11

Two-phase flow

In the previous chapters we have been concerned with the microfluidic properties of a
single liquid. In Section 4.2 we went beyond the case of a pure liquid and studied the
convection-diffusion equation for solutes in a solvent. This theme was extended in Sec-
tion 7.3, where we analyzed the influence of dissolved ions on the electrohydrodynamic
properties of electrolytes. The topic of the present chapter is the behavior of two different
fluids flowing simultaneously in a microchannel; a situation denoted two-phase flow. We
will treat examples of flow involving either one liquid and one gas phase, or two different
liquid phases.

Two-phase flow is very important in lab-on-a-chip systems, where it is often desirable
to bring together two liquids to prepare for further treatment, to obtain certain chemical
reactions, or to perform chemical analysis. The presence of gas bubbles in microchannels
is another major two-phase flow issue in microfluidics, either because the mechanical
properties of the bubbles are used for some functionality of the devise, or because unwanted
bubbles appear as a consequence of the introduction of some liquid or as the result of
electrolysis.

In the following we will study some basic theoretical aspects of simple two-phase flow in
microfluidic systems. By keeping the examples simple we can gain some insight in a topic
for which the mathematical formalism otherwise easily can grow to an almost intractable
level of complexity.

11.1 Two-phase Poiseuille flow

Consider the infinite parallel-plate geometry analyzed in Section 2.4.6 for basic Poiseuille
flow, but assume now that we have managed to establish a steady-state flow of two different
liquids with a flat interface situated at z = h∗ as shown in Fig. 11.1. The flow is driven
by a pressure drop ∆p over the distance L along the x axis. The bottom layer 0 < z < h∗

is liquid 1 with viscosity η1, while the top layer h∗ < z < h is liquid 2 with viscosity η2.
As in Section 2.4.6 the system is translation invariant along the x and the y axis, so as
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Figure 11.1: An example of two-phase Poiseuille flow. Fluid 1 of viscosity η1 (light gray)
and fluid 2 of viscosity η2 (gray) occupying the space of height h between two horizontally
placed, parallel, infinite planar plates (dark gray). The interface situated at z = h∗ is
assumed to be planar and stable. A constant pressure drop ∆p along the x axis drives
a Poiseuille flow v = vx(z) ex. The boundary conditions are no slip at the walls and
continuous velocity vx and shear stress σxz at the interface z = h∗. Note the discontinuity
in the derivative of the velocity at the interface. Here we have used the parameter values
η2 = 4η1 and h∗ = 0.6h.

before the velocity field v and the pressure field p must be of the form

v = vx(z) ex, 0 < z < h, (11.1a)

p(x) = p0 +
(
1− x

L

)
∆p. (11.1b)

Note that because we have assumed a flat interface no Young-Laplace pressure arises
and the pressure field is as simple as in the case of a single-phase Poiseuille flow.

It is natural to piece the full velocity field vx(z) together from to piecewise differentiable
fields v1,x(z) and v2,x(z):

vx(z) =

{
v2,x(z), for h∗ < z < h,

v1,x(z), for 0 < z < h∗.
(11.2)

The boundary conditions for the velocity field are no slip at the walls and continuous
velocity vx and shear stress σxz at the interface z = h∗,

v2,x(h) = 0, (11.3a)

v1,x(0) = 0, (11.3b)

v1,x(h∗) = v2,x(h∗), (11.3c)

σ1,x(h∗) = σ2,x(h∗). (11.3d)

If the shear stress were not continuous, infinite and thus unphysical forces would be
present at the interface. A straightforward generalization of Eq. (2.52) for the single-
phase Poiseuille flow velocity field yields the following expressions for v1,x(z) and v1,x(z)
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that satisfies the first two boundary conditions Eqs. (11.3b) and (11.3a),

v2,x(z) =
∆p

4η2L
(h− z)(z − h2), (11.4a)

v1,x(z) =
∆p

4η1L
(h1 − z)z. (11.4b)

Here h1 and h2 are two constants to be determined by use of the last two boundary
conditions Eqs. (11.3c) and (11.3d). Using the fact that in the setup with the given
symmetries σxz(z) = η∂zvx(z), the two boundary conditions results in two linear equations
for the two unknown h1 and h2, which are easily solved to yield

h2 =

(η1
η2
− 1

)(
1− h∗

h

)
η1
η2

(
1− h∗

h

)
+ h∗

h

h∗, (11.5a)

h1 = h + h2. (11.5b)

In Fig. 11.1 is shown an explicit example of a velocity profile in a two-phase Poiseuille
flow with a flat interface. Note the discontinuity in the derivative of the velocity field at
the interface z = h∗. This discontinuity arises from the different values of the viscosities
η1 and η2 and the demand for a continuous shear stress at the interface.

11.2 Capillary and gravity waves

It might be of interest to study under which conditions the interface of a two-phase
Poiseuille flow is stable. The full analysis of this simple question turns out to be very
difficult and is beyond the scope of these lecture notes. Therefore, to shed some light on
the issue we are forced to consider some simplified cases, namely the so-called capillary
and gravity waves where the effect of viscosity can be neglected.

11.2.1 Gravity waves of short wavelength

Gravity waves of small amplitude and short wavelengths on a water-air surface is arguably
the most simple example of interface waves where viscosity can be neglected. This is also
known as gravity waves on an inviscid liquid with a free surface. During the calculations
we make certain assumptions to progress at ease; at the end of the calculation we check
the obtained solution for consistency with these assumptions. If viscosity indeed can be
neglected then according to Eq. (11.61) in Exercise 11.2 the flow of the incompressible
water is a potential flow,

v = ∇φ, (11.6)

where φ is a scalar potential function to be determined. Assume that the body of water is
infinite in the xy plane and sustained by a solid base plane placed at z = −h. When at rest
the water-air surface is flat and given by z = ζ(x, y, t) ≡ 0. Starting from rest a small-
amplitude plane wave running in the x direction is gradually established. Under these
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circumstances the potential function does not depend on y, thus φ = φ(x, z, t). Neglecting
the non-linear term due to the smallness of v, the incompressible Navier–Stokes equation
takes the form

ρ∂tv = −∇p + ρg ⇒ ρ∇(∂tφ) = −∇(p + ρgz). (11.7)

We evaluate this expression at z = ζ, which is assumed small. The pressure of air at the
interface is the constant p0. Moreover, keeping only first order terms in φ and ζ, we find
that φ(ζ) ≈ φ(0) + ∂zφ(0)ζ ≈ φ(0), thus φ needs only to be evaluated at the equilibrium
position z = 0. Eq. (11.7) is now easily integrated and evaluated at z = ζ to give

ρ
(
∂tφ + g ζ

)
= p0, (11.8)

which can be interpreted as continuity of the pressure going from the liquid to air across
the interface. Differentiating this equation with respect to time yields

∂ 2
t φ + g ∂tζ = 0. (11.9)

We now note that on one hand vz = ∂zφ and on the other hand, since v and ζ are both
small, vz = dζ/dt = ∂tζ + (v ·∇)ζ ≈ ∂tζ. Thus inserting ∂tζ = vz = ∂zφ into Eq. (11.9)
and rearranging the two terms leads to

−∂ 2
t φ = g ∂zφ. (11.10)

The continuity equation ∇·v = 0 must also be fulfilled. Combining this equation with the
potential form v = ∇φ yields the Laplace equation for φ,

∇·v = 0 ⇒ ∇2φ = 0. (11.11)

Consequently, it is natural to seek plane-wave solutions of the form

φ(x, z, t) = f(z) cos(kx− ωt), (11.12)

where k = 2π/λ is the wavenumber and ω the angular frequency. Inserting this into the
continuity equation Eq. (11.11) yields, after removal of the common cosine-factor

∂ 2
z f − k2f = 0 ⇒ f(z) =

A

sinh(kh)
cosh

[
k(z + h)

]
, (11.13)

where the argument of the cosine hyperbolic function is chosen to ensure vz = ∂zφ = 0 for
z = −h, so that no liquid is allowed to flow through the solid base plane at z = −h. In
conclusion, the potential function φ and the velocity field v becomes

φ(x, z, t) =
A

sinh(kh)
cosh

[
k(z + h)

]
cos(kx− ωt), (11.14a)

v(x, z, t) =
A

sinh(kh)



−k cosh

[
k(z + h)

]
sin(kx− ωt)

0
+k sinh

[
k(z + h)

]
cos(kx− ωt)


 . (11.14b)
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Figure 11.2: (a) A free-surface gravity wave on an inviscid liquid with a density ρ and
of depth h. The surface is displaced by the amount ζ(x, t) from the equilibrium position
given by z ≡ 0, and the resulting wave has the wavelength λ. (b) A gravity wave at the
interface between two confined liquid layers of densities ρ1 and ρ2 and of layer depths h1

and h2, respectively.

At the interface, z = 0, we obtain the velocity

v(x, 0, t) = A



−k tanh

[
kh

]
sin(kx− ωt)

0
+k cos(kx− ωt)


 −→

kh→∞
A



−k sin(kx− ωt)

0
+k cos(kx− ωt)


 ,

(11.15)
while at the base plane, z = −h, we get

v(x,−h, t) =
A

sinh(kh)



−k sin(kx− ωt)

0
0


 −→

kh→∞




0
0
0


 . (11.16)

Note that in general the no-slip boundary condition is not fulfilled by the velocity field
given in Eq. (11.16). This is not a big surprise; as we have neglected viscosity there is no
reason for vx = 0 at the solid wall. We can only insist that no liquid can penetrate the
wall, i.e., vz = 0 for z = −h. The free-surface gravity wave is sketched in Fig. 11.2(a).

With the solution for φ(x, z, t) at hand we can use Eq. (11.10) to obtain the dispersion
relation ω = ω(k) for the gravity waves. Inserting Eq. (11.14a) we arrive at the following
after removal of the common function

ω2 = gk ⇒ ω =
√

gk =
√

2π
g

λ
, (11.17)

thus the frequency increases as the wavelength decreases.
We end this treatment by assessing the validity of omitting the viscosity. To establish

when |η∇2v| ¿ |ρ∂tv| we note that ∇ → k and ∂t → ω =
√

gk. So we get

|η∇2v| ¿ |ρ∂tv| ⇒ ηk2 ¿ ρ
√

gk ⇒ k3 ¿ ρ2g

η2
⇒ λ À 2π

( η2

ρ2g

) 1
3
. (11.18)

Inserting the values for water we obtain λ À 60 µm. Likewise, to establish when the
non-linear term can be neglected we use again ∇ → k, ∂t → ω, and v → ωζ:

|ρ(v·∇)v| ¿ |ρ∂tv| ⇒ kωζ ¿ ω ⇒ λ À 2πζ. (11.19)
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Finally, the no-slip condition is only approximately fulfilled for kh À 1 or λ ¿ 2π h, so
the range of validity of the treatment is given by

max
{
60 µm, 2π ζ

} ¿ λ ¿ 2π h. (11.20)

Based on the solution for free-surface gravity waves we can easily analyze the gravity
waves at the interface between two confined liquid layers 1 and 2 as sketched in Fig. 11.2(b).
We simply try to match solutions for the potential function φ1 and φ2, for each layer, of
the form given by φ in Eq. (11.14a):

φ(x, z, t) =

{
φ2(x, z, t) = A2 cosh

[
k(z − h2)

]
cos(kx− ωt), for 0 < z < h2,

φ1(x, z, t) = A1 cosh
[
k(z + h1)

]
cos(kx− ωt), for −h1 < z < 0.

(11.21)
Here A1 and A2 are constants to be determined by the boundary conditions at the interface,
z = 0. One boundary condition is the continuity of the pressure at the interface. In analogy
with Eq. (11.8), but now with the liquid pressures on both sides of the equation we obtain

ρ1

(
∂tφ1 + g ζ

)
= ρ2

(
∂tφ2 + g ζ

)
, for z = 0, (11.22)

which can be solved with respect to ζ to yield

ζ =
1

(ρ1 − ρ2)g

(
ρ2∂tφ2 − ρ1∂tφ1

)
, for z = 0. (11.23)

The other boundary condition simply states that the vertical velocity component vz = ∂zφ
must be the same on either side of the interface,

∂zφ1 = ∂zφ2, for z = 0. (11.24)

Now, by differentiation of Eq. (11.23) with respect to time and utilizing vz = ∂zφ = ∂tζ
we arrive at

(ρ1 − ρ2)g∂zφ1 = ρ2∂
2
t φ2 − ρ1∂

2
t φ1, for z = 0. (11.25)

Insertion of the wave functions Eq. (11.21) leads to the following forms of Eqs. (11.24)
and (11.25), after appropriate algebraic reductions,

A1 sinh
(
kh1

)
= −A2 sinh

(
kh2

)
, (11.26a)

(ρ1 − ρ2)gkA1 sinh
(
kh1

)
=

[
ρ1A1 cosh

(
kh1

)−A2 cosh
(
kh2

)]
ω2. (11.26b)

Solving for ω we find the dispersion relation

ω =

√
(ρ1 − ρ2)gk

ρ1 coth
(
kh1

)
+ ρ2 coth

(
kh2

) . (11.27)

When both liquids are very deep, kh1 À 1 and kh2 À 1 the result is simply

ω =

√
gk

ρ1 − ρ2

ρ1 + ρ2

. (11.28)

The discussion of the physical interpretation of this expression for ρ1 > ρ2 and for ρ1 < ρ2

is left as an exercise for the reader.
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11.2.2 Capillary waves

So far the role of surface tension between the fluids in the two-phase flow has been ne-
glected, but to add it is not too difficult, at least conceptually. We have already in
connection with Eq. (5.9) discussed how surface tension must be included as a Young–
Laplace pressure-drop discontinuity in the boundary condition at the interface for the
stress tensor projected along the surface normal. Since the Young–Laplace pressure-drop
∆psurf is given by the surface tension γ times the curvature κ of the interface,

∆psurf = γ κ, (11.29)

we choose to study the influence of surface tension for the gravity waves in the limit of small
wavelengths, see Section 11.2.1, as the curvature increases as the wavelength decreases.

From differential geometry it is known that for a curve r(s) described by the parameter
s, the curvature κ is given by

κ(s) =
|r′(s)× r′′(s)|

|r′(s)|3 , (11.30)

where the prime denotes differentiation with respect to s. If one interprets s as time, the
expression for the curvature can by understood from a physical point of view, since r′ and
r′′ can be identified with the instantaneous velocity v and acceleration a, respectively. For
a particle in a circular orbit of radius r we know from classical mechanics that |a| = |v|2/r
or 1/r = |a|/|v|2, but 1/r is exactly the curvature, so Eq. (11.30) really states that
κ = |ev × a|/|v|2, where ev ≡ v/|v| is a unit vector in the tangential direction.

If we as in Section 11.2.1 study waves only propagating along the x direction, then
the x coordinate can serve as a parameter to define the shape r(x) of the interface at any
given time t and y coordinate,

r =




x
y

ζ(x)


 , r′ =




1
0

ζ ′(x)


 , r′′ =




0
0

ζ ′′(x)


 , (11.31)

where ζ is the displacement along the z axis of the interface away from the equilibrium
position at z = 0. Keeping terms of linear order in ζ gives the curvature

κ(x) = ζ ′′(x) +O(ζ2). (11.32)

Using the potential description of the velocity field, v = ∇φ from Section 11.2.1 we
obtain by combining Eqs. (5.9) and (11.8) the following partial differential equation for φ
and ζ:

ρ
(
∂tφ + g ζ

)
= p0 + γ∂ 2

x ζ. (11.33)

In analogy with the derivation of Eq. (11.10), we differentiate Eq. (11.33) with respect to
time and utilize ∂tζ = ∂zφ to obtain

−∂ 2
t φ = g ∂zφ−

γ

ρ
∂ 2

x ∂zφ, for z = 0. (11.34)
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Moreover, the incompressibility condition ∇v = ∇2φ still holds, so φ still takes the form
of Eq. (11.14a),

φ(x, z, t) = A cosh
[
k(z + h)

]
cos(kx− ωt). (11.35)

Inserting this into Eq. (11.34) leads, in analogy with Eq. (11.17), to the dispersion relation
ω(k) for capillary waves,

ω2 = gk +
γ

ρ
k3 ⇒ ω =

√
gk +

γ

ρ
k3. (11.36)

As expected, the effect of surface tension becomes more dominant at shorter wave-
length where the wavenumber is big. Surface tension dominates in the square root of the
dispersion relation when

γ

ρ
k3 À gk ⇒ k À

√
ρg

γ
=

1
`cap

⇒ λ ¿ 2π`cap, (11.37)

where the capillary length `cap, introduced in Eq. (5.13) for characterizing capillary rise,
now reappears.

11.3 Gas bubbles in microfluidic channels

Many microfluidic networks on modern lab-on-a-chip devices contain channel contractions.
These tend to become problematic if, as often is the case, gas bubbles are introduced
into the liquid at the inlets or by electrochemical processes. Due to the small channel
dimensions gas bubbles can easily be big enough to span the entire channel cross-section.
Such ”large” bubbles are prone to get stuck at the channel contraction, whereby they can
clog the flow and disturb measurements or functionality of the system in an uncontrolled
manner. To clear the clogged channel an external pressure, the so-called clogging pressure,
has to be applied to push the clogging bubble out of the system.

A complete analysis of the motion of a large bubble through a microchannel contraction
involves many different physical effects, some which are not completely understood. Any
comprehensive analysis would at least require detailed modelling of the liquid-gas, liquid-
solid, and solid-gas interfaces as well as the dynamics in the bulk fluids. But also more
complicated processes near the contact lines need to be addressed, e.g., wetting, contact
line pinning and hysteresis, dynamic contact angles and contact lines, and static and
dynamic friction. We will, however, restrict our analysis to the simple quasi-static motion
of bubbles. By this we mean that the velocity of the bubble is nearly zero and that
the entire model system remains arbitrarily close to equilibrium for all bubble positions.
All dynamic aspects are thus neglected, and basically the model involves only the free
energy of the internal interfaces of the system and external pressures. This is motivated
by the fact that it is difficult experimentally to control surface related properties. We thus
only study geometry related effects. We also choose to work with axisymmetric channels
of smooth (but otherwise arbitrary) contraction geometries free from any sharp corners
and other singularities. With these simplifications the forces or pressures needed to push
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liquid (l)
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PL + ∆Pb
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Pi

xL xcm xR

θ

θt

r(x)

x

r
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symmetry

Figure 11.3: A bubble with internal pressure Pi and center of mass xcm in a hydrophilic
axisymmetric channel. The left (right) contact line has the coordinate xL (xR) and contact
angle θ. The channel is contracting from a straight part of radius R to one of radius r.
The specific channel profile is defined by some function r(x). Throughout this paper we
have chosen r(x) to be a sloped straight line joined to the straight parts by two circle arcs.
The tapering angle θt is given by tan θt = −r′(x). The pressure left (right) of the bubble
is denoted PL (PR) and the pressure difference across the bubble is ∆Pb.

a bubble through the system can be calculated accurately without losing the essential
physics of the problem. This in turn enables us to formulate design rules for microchannel
contractions to prevent or reduce clogging. The treatment given in the following is an
excerpt from Jensen, Goranović, and Bruus, J. Micromech. Microeng. 14, 876 (2004).

11.3.1 The model and basic physical assumptions

Consider a hydrophilic microfluidic channel or capillary, such as the one depicted in
Fig. 11.3, which is axisymmetric about the x axis with a position dependent channel
radius r(x). The channel is filled with a liquid. A large bubble of some other fluid, we
think mainly of a gas such as air, is present in the liquid. By large we mean that the
volume of the bubble is larger than the volume V max

sph of the largest inscribed sphere that
can be placed anywhere in the microchannel. A large bubble divides the liquid in two
disconnected parts, left and right of the bubble, respectively. The bubble itself consists of
a bulk part in direct contact with the walls of the channel and of two menisci, in contact
with the liquid, capping the ends of the bubble.

The bubble is assumed to be in quasi-static equilibrium. In that case it is relatively
simple to combine mass conservation with geometric constraints to determine, as a function
of the bubble position, the pressure drops over the two menisci needed to maintain this
equilibrium. We define our central concept, the clogging pressure, as the maximum of the
position dependent pressure drop across the bubble, i.e., the minimal external pressure
that must be supplied to push the bubble through the microchannel.

Our model system consists of a solid channel containing a liquid and one large gas
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bubble. Therefore, the essential physical parameters are the three surface tensions (surface
free energy per area) γlg, γsl, and γsg for the liquid-gas, solid-liquid, and solid-gas interfaces,
respectively. In equilibrium the contact angle θ is determined by the surface tensions
through the Young equation Eq. (5.11),

γsg − γsl = γlg cos θ. (11.38)

The contact angle is in the following taken as the equilibrium angle or rather as an average
contact angle. Because contact angle hysteresis is very sensible to surface effects we do
not address these questions in this work.

To sustain a curved interface with the main radii of curvature Rc
1 and Rc

2 between a
gas of pressure Pg and a liquid of pressure Pl, the pressure difference ∆P = Pg − Pl must
obey the Young-Laplace equation Eq. (5.8)

∆P = γlg

(
1

Rc
1

+
1

Rc
2

)
= 2γlg

cos θ

r
, (11.39)

where the last equation is applicable for a constant circular cross-section of radius r. We
use the standard convention that these radii are taken as positive if the interface is concave
when seen from the gas.

In the rest of the paper we consider a ”large” bubble having the initial position ’1’
in the widest part of the channel. The initial volume is V1 = γV max

sph , where γ > 1 and
V max

sph = 4πr3
1/3, and the corresponding internal pressure is Pi,1. At a later stage the

bubble is moved to a position ’2’, where the volume is V2 and the internal pressure Pi,2.
In the quasi-static case the bubble motion is isothermal and hence the compressibility
condition applies,

Pi,1V1 = Pi,2V2. (11.40)

The pressure Pi within the bubble is given as the external pressure P0 plus the pressure
change ∆P across the curved interface, given by Eq. (11.39).

The most extreme compression is obtained by pressing a large bubble, which floats
without geometrical constraints in a bulk liquid of pressure P0, into a narrow circular
channel of radius r. Combining Eqs. (11.39) and (11.40) yields

V1

V2
=

Pi,2

Pi,1
≈ Pi,2

P0
= 1 +

2γlg cos θ

rP0
. (11.41)

For example, moving a large spherical air bubble in water (γlg = 0.0725 J m−2) at the
ambient pressure P0 = 105 Pa into a channel of radius r = 25 µm leads to V1/V2 ≈ 1.06,
i.e., a volume compression of 6%. Moving, as in Sec. VI, a bubble from a 300 µm to a
190 µm wide channel yields a compression of about 0.2%.

In the case of laser ablated microchannels in plastic chips compressibility effects are
negligible as the smallest dimensions typically are greater than 100 µm. However, for
silicon based micro- or nanofluidic devices compressibility may play a significant role.

For a bubble positioned in a microchannel contraction the total internal energy Etot

is the sum of the surface free energy, gravitational energy, kinetic energy, and frictional
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energy. We regard the surrounding pressures as external energy. By our definition quasi-
static motion of an incompressible bubble imply that the kinetic energy is zero and that
friction is zero because of hydrostatic and thermodynamic equilibrium. Finally, we treat
channels of characteristic dimensions 2r less than 300 µm, which is significantly smaller
than the capillary length of water, `cap ≈ 2700 µm, Eq. (5.13). So the gravitational energy
can also be neglected, which ensures that the menisci may be approximated by spherical
caps.

The total internal energy Etot of the microchannel containing a quasi-statically moving
bubble is given only by the surface free energy, i.e., the sum of interfacial energies γi times
interfacial areas Ai,

Etot =
∑

i

γiAi = γlgAlg + γsgAsg + γslAsl. (11.42)

The pressure-related applied external force F needed to balance the bubble is given by
the gradient of the total internal energy with respect to the center of mass coordinate of
the bubble xcm. Hence

F =
dEtot

dxcm
, (11.43)

which thus depends on the bubble position xcm and, through the areas Ai, on the geometry
of the channel.

The Young-Laplace pressure drops, c.f. Eq. (11.39), at the menisci are given by,

∆PL = Pi − PL, (11.44a)
∆PR = Pi − PR. (11.44b)

The total pressure drop ∆Pb(xcm) over the bubble as a function of its center of mass xcm

is given by
∆Pb(xcm) = PR − PL = ∆PL(xcm)−∆PR(xcm). (11.45)

The clogging pressure Pclog is defined as the maximal position dependent pressure drop
across the bubble,

Pclog = max
{−∆Pb(xcm)

}
. (11.46)

The clogging pressure expresses the minimal amount by which the left-side pressure PL

must exceed the right-side pressure PR to push the bubble through the contraction quasi-
statically from left to right.

11.3.2 General energy considerations for axisymmetric microchannels

Consider a bubble placed in a cylindrical channel of radius R. We want to determine
the change in energy resulting from moving it into a smaller channel of radius r < R,
e.g., by moving it from left to right in the channel depicted in Fig. 11.3. Intuitively, we
would expect the energy to increase as a result of the move. In most cases this intuition
is correct, however, we shall see that in some cases the system gains energy by the move,
solely due to geometric conditions.
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Figure 11.4: Plot of the energy change ∆Etot as a function of the ratio r/R. The bubble
is moved from a wide channel of radius R = 150 µm to a narrow channel of radius r. Five
curves are shown corresponding to the volume ratio γ = 1, 2, 3, γc, and 8, respectively,
γc ≈ 4.75. For ”small” volumes 1 ≤ γ < γc the system can gain energy by moving the
bubble to the narrow channel, if the latter is not too narrow. For γ > γc the move costs
energy in all cases.

The bubble has the initial volume V1 = γV max
sph , where γ > 1 and V max

sph = 4πR3/3.
With this constraint the bubble is forced to touch the walls regardless of its position.
According to Eqs. (11.39) and (11.44b) the internal pressure of the bubble is

Pi,1 = PR + 2γlg
cos θ

R
. (11.47)

The volume of the bubble is the sum of two spherical cap volumes and the volume of a
cylinder of initial length L. Once the length L is known, the relevant interfacial areas Alg

and Asg may be found.
The gas bubble is now moved to the cylindrical channel of radius r, and according to

Eqs. (YoungLaplace), (11.40), and (11.44b) the pressure Pi,2 volume V2 are,

Pi,2 = PR + 2γlg
cos θ

r
, (11.48)

V2 =
Pi,1

Pi,2
V1. (11.49)

By solving Eq. (11.49) it is straightforward to find the change in total free surface energy,

∆Etot = Etot,2 −Etot,1 =
γlg(Alg,2 −Alg,1) + γlg2π cos θ(rl −RL), (11.50)

where l is the length of the bubble in the channel of radius r < R (situation 2). In
Eq. (11.50) the Young relation Eq. (11.38) has been used to eliminate the solid-liquid and
solid-gas interfacial energies.
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Figure 11.5: The energy ∆Etot as a function of the ratio r/R for different values of the
wide channel radius, R = 100, 150, 200, 250, and 300 µm. The plain curve corresponds to
the smallest bubble for γ = 1 and the dotted to a larger bubble with γ = 3.

Based on Eq. (11.50) we can analyze the energy change when moving the bubble from
the wide channel of radius R to the narrow channel of radius r. First we give the limiting
values of ∆Etot. In the limit r/R → 1 we obviously get ∆Etot → 0. In the opposite limit,
r/R → 0, the compressibility of the bubble results in convergence of ∆Etot,

lim
r
R
→0

∆Etot =
πR3

3

(
4γRPR − γlg

4 + sin(3θ)− 3 tan θ

cos2 θ

)
. (11.51)

To discuss ∆Etot for general values of r/R we use a numerical example: an air bubble
in a water filled PMMA channel for which we have the parameter values PR = 105 Pa,
γlg = 72.5 mJ, and θ = 72◦. The radius ratio r/R and the volume parameter γ are then
varied.

In Fig. 11.4 the energy ∆Etot (Eq. (11.50)) is plotted as a function of the ratio r/R for
given values of γ. The figure shows that for large values of γ, i.e., large bubbles, it costs
energy (∆Etot > 0) to move the bubble from the wide to the narrow channel. However,
there exists a critical value γc ≈ 4.75 below which the system can gain energy by moving
the bubble, if the radius ratio r/R is not too small. This behavior is generic for a bubble
in a contracting channel, but the specific shape of the curve and the optimal minimum
depend on the material parameters and the external pressure PR.

The critical value γc, above which energy gain is impossible, is given by ∂∆Etot/∂(r/R) =
0 at r/R = 1,

γc =
(3− cos(3θ) + 2 sin θ)(2γlg cos θ + RP0)

2RPR cos θ(1 + sin θ)
. (11.52)

Fig. 11.5 depicts the energy ∆Etot as a function of the ratio r/R for γ = 1 and γ = 3,
and for five values of the wide channel radius, R = 100, 150, 200, 250, and 300 µm. From
Eq. (11.50) it may be seen that min{∆Etot} ∝ R2 as the area is proportional to R2 and
L is proportional to R. Deviations from this proportionality arise for small values of R
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because of compressibility. For γ = 1 in Fig. 11.5 we find max{−∆Etot} = kR2 with
k = 0.159 J/m2. This proportionality is illustrated as the energy at a given r/R point is
increased by a factor 4 when R is doubled, e.g., from R = 150 µm to R = 300 µm.

The previous calculations clearly show that for some geometries it is favorable to place
the bubble in the narrow rather than in the wide part of the channel. In the following we
shall address the question whether for such geometries the bubble will move spontaneously
or it must cross an energy barrier to arrive at the low-energy state in the narrow channel.

11.3.3 Analytical results for contractions with energy gain

Combining the geometry defined in Fig. 11.3 with Eqs. (11.39) and (11.45) the central
expression of our analysis is easily derived,

∆Pb = 2γlg

(
cos[θ − θt(xL)]

r(xL)
− cos[θ + θt(xR)]

r(xR)

)
. (11.53)

From the discussion in Section 11.3.1 it follows that if ∆Pb < 0 then the contraction causes
bubble clogging, whereas for ∆Pb > 0 the bubble tends to move spontaneously through
the contraction towards the narrow part.

Based on Eq. (11.53) a number of design rules may be established specifying the
geometric features that may prevent or decrease clogging. Consider a bubble that starts
out in the wide straight section left of the contraction, where it has the length L0 = xR−xL.
The pressure drop ∆Pb is zero to begin with, but depending on the shape of the contraction,
such as the two examples shown in Fig. 11.6, ∆Pb changes as the bubble advance quasi-
statically through the contraction.

The first part of any contraction can always be approximated by a circle with an arc
angle which is the local tapering angle θt. As the right contact line xR just enters the
contraction, Eq. (11.53) can be expanded to first order in θt yielding

∆Pb ≈
2γlg sin θ

R
θt > 0. (11.54)

Thus initially the bubble tends to move spontaneously into the contraction. The physical
reason for this is that the local tapering angle allows the meniscus to flatten a little, which
reduces the costly gas-liquid interface energy.

Once the bubble moves inside the contraction defined in Fig. 11.3, a complicated
interplay between the initial bubble length L0, the contact angle θ, the channel radii
r(xL) and r(xR) at the contact lines, as well as the local tapering angle θt(x) decides
whether bubble clogging occurs or not. We classify our systems in two main classes:

Class α comprises all cases where no clogging occurs, i.e., where the bubble can move
spontaneously through the contraction without applying an external pressure.

Class β contains all cases with clogging, i.e., where ∆Pb < 0 at some point or, equiva-
lently, where Pclog > 0.

For class β four sub-classes can be identified according to where the bubble is when ∆Pb

becomes negative and clogging occurs. This bubble position is classified by the position of
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Figure 11.6: Two generic situations for a bubble of length L = xR−xL near a microchannel
contraction of length x2 − x1. (a) The contraction is long enough to contain the entire
bubble, i.e., xR − xL < x2 − x1. (b) The contraction is so short that the bubble can span
it completely, i.e., xR − xL > x2 − x1, which is a class β4 bubble.

the contact lines xL and xR relative to the beginning x1 and the end x2 of the contraction
region (see Figs. 11.3 and 11.6):

Class β1 : xL < x1 and x1 < xR < x2,
Class β2 : x1 < xL < x2 and x1 < xR < x2,
Class β3 : x1 < xL < x2 and x2 < xR,
Class β4 : xL < x1 and x2 < xR.

(11.55)

A detailed analysis of Eq. (11.53) yields important relations for some of the clogging
classes.

A β2 clogging only occurs if the bubble can move entirely within the tapered region as
shown in Fig. 11.6(a), and if at some point it has a length L = xL − xR such that

L >
r(xL)
tan θt

[
1− cos(θ − θt)

cos(θ + θt)

]
. (11.56)

In β4 where the bubble in fact spans the entire contraction as sketched in Fig. 11.6(b),
there is always clogging and the clogging pressure is maximal. The value for ∆Pb is
negative and independent of the shape of the contraction. From Eq. (11.53) we get

∆Pb = 2γlg cos θ

(
1
R
− 1

r

)
< 0. (11.57)

The non clogging class α will in general happen if the bubble is short enough. According
to the class β4 analysis a necessary (but not sufficient) condition for avoiding clogging is
that the bubble is short enough to be completely contained in the contraction region. An
analysis of the β2 and β3 classes show that it should also be short enough to avoid clogging
while the left meniscus is still in the tapered region. The β1 class furthermore puts upper
limits on tapering angles that allow for clog-free flow.
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Figure 11.7: Numerical analysis of quasi-static bubble motion in a microchannel contrac-
tion. (Top) Different positions of a large bubble with γ = 1.02 inside a 1000 µm long
hydrophilic channel with contact angle θ = 72◦. The tapering angle is θt = 10◦ and 20◦ in
the left and right column, respectively. (Bottom) (a) For the same bubble positions as
above (marked by dots), plots are shown of the total internal energy Etot versus the center
of mass coordinate xcm, the balancing external force F , and the pressure drop across the
bubble ∆Pb versus xcm. Note that for the system to the right, −∆Pb < 0 for all positions,
i.e., no clogging occurs (a class α system), while for the system to the left, −∆Pb > 0 for
xcm around 300 µm, i.e., clogging occurs (a class β system).
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11.4 Exercises

Exercise 11.1
Two-phase Poiseuille flow
We study some aspect of the difference in hydrostatic pressure between points at different
depths in some incompressible liquid.

(a) Give a qualitative argument based on basic physical considerations that the velocity
profile shown in Fig. 11.1 is correct.

(b) Prove the correctness of Eq. (11.5) for the two constants h1 and h2 that determines
the explicit expression for the velocity field in the two-phase Poiseuille flow.

Exercise 11.2
Kelvin’s circulation theorem and potential flow
The integral Γ =

∮
C v · δr taken along some closed contour C defined by certain fluid

particles is called the velocity circulation. The infinitesimal curve length δr is defined as
the difference of the position vectors r of neighboring fluid elements defining the contour
C.

(a) Argue why the time derivative of the circulation is given by

dΓ
dt

=
d
dt

∮

C
v·δr =

∮

C

dv
dt
·δr +

∮

C
v·dδr

dt
. (11.58)

(b) Since the time derivative of a fluid element position r is just the fluid element
velocity v, i.e., dr/dt = v, show that

v·dδr
dt

= v·δv = δ
(1

2
v2

)
. (11.59)

(c) If the viscosity term can be neglected in the Navier–Stokes equation dv/dt =
∇(−p/ρ− gz) + η∇2v, then show that the circulation Γ becomes

dΓ
dt

=
∮

C
∇(−p/ρ− gz)·δr +

∮

C
δ
(1

2
v2

)
= 0 ⇒ Γ = const. (11.60)

(d) Consider a situation where the resulting velocity field v(t) is built up from rest
v(t = 0) ≡ 0. Argue that in this case Γ(t) ≡ 0, from which it follows that ∇× v = 0 and
thus a scalar potential function φ exists such that

v = ∇φ. (11.61)

When this equation is fulfilled the flow is for obvious reasons denoted a potential flow.

Exercise 11.3
Stability of gravity waves
The dispersion relation ω(k) for gravity waves is given by Eq. (11.28). Discuss the physical
interpretation of this expression for ρ1 > ρ2 and for ρ1 < ρ2. Hints: note when the heaviest
liquid is on top, and use that the time evolution is given by eiωt also when ω is a complex
number.
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Exercise 11.4
Capillary waves
The basic theory for capillary waves was given in Section 11.2.2.

(a) Verify that the wave equation Eq. (11.34) is correct.
(b) Verify and discuss the dispersion relation Eq. (11.36).

Exercise 11.5
The pressure drop across a gas bubble in a microchannel
Prove that the pressure drop across a bubble in a microfluidic channel indeed is given by
Eq. (11.53)

11.5 Solutions

Solution 11.1
To be added
In the next edition solutions to the exercises will be added.



Chapter 12

Complex flow patterns

Viscous forces dominate in microfluidics and tend to favor laminar flow at the expense of
turbulence. Most laminar flow patterns are simple, and in the case of creeping flow they
even closely follow the geometry of the enclosing channel. Nevertheless, it is possible by
careful design to create complex flow patterns in microfluidic lab-on-a-chip systems. In
this chapter we will study of two examples of such an increasing level of complexity in
microflows.

12.1 Pressure-driven flow in patterned microchannels

The first example will just be mentioned briefly. Normally, the pressure gradient applied
in microfluidics is axial thus leading to a forward running flow. However, if a row of
parallel ridges are placed at the bottom of the channel at an oblique angle the result is an
anisotropic hydraulic resistance. The strong dependence of the resistance on height in flat
channels, Rhyd ∝ h−3 according to Eq. (2.53), means that the flow direction will be turned
away from the straight forward direction towards a direction more parallel to the ridges,
as there is less resistance to a flow along the ridges than in the perpendicular direction.
The effect is similar to rifling in a gun barrel. The viscous liquid begins to move in a
helical pattern along the channel axis; the liquid circulates back at the top of the channel.

A more complicated flow pattern arises if one places groups of ridges with different
tilt angles. One famous example is the so-called staggered herringbone mixer, where
two set of ridges oriented in two different directions meet in a cusp somewhere inside the
microfluidic channel. Instead of just one helical motion inside the channel, the herringbone
mixer generates several counter-rotating helical flows. The resulting flow has proven to
be very efficient for mixing, moreover, the design is very robust as it does not contain any
moving mechanical parts.

Since the presentation of the design method in three papers from 2002 by Ajdari
[Phys. Rev. E 65, 016301, (2002)], Stroock et al. [Science 295, 647, (2002)], and Stroock
et al. [Anal. Chem. 74, 5306 (2002)], several research groups have taken up this design
idea. In Fig. 12.1 is shown a staggered herringbone device fabricated at MIC. The flow
is visualized using fluorescein, a molecule that can be made fluorescent and hence visible.
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Figure 12.1: The top panel is a micrograph of a staggered herring mixer fabricated at
MIC. Water is entering from the left containing fluorescein in the top quarter of the stream.
Bottom panel is the result of a FemLab simulation. A good agreement is observed between
experiment and simulation. Courtesy the groups of Fougt Hansen and Bruus at MIC.

The top panel is a micrograph of a 200 µm with a set of staggered herringbone ridges
at the bottom of the channel. Water is injected from the left with fluorescein in the top
quarter of the stream. The ridges are grouped in sets of five, and it is seen that already
after passing two of these groups the fluorescein is spreading widely in the channel. The
bottom panel in Fig. 12.1 is a FemLab simulation of the staggered herringbone mixer flow.
A good agreement is shown between experiment and simulation.

A more theoretical treatment of the complex flow can be done by making a perturbation
expansion in powers of the amplitude of the ridges relative to the total channel height.
This perturbation calculation is more complicated than the one presented in Section 2.5,
because in the latter the pressure gradient remained parallel to the flow direction.

With this remark we end this short presentation of the pressure-driven flow in pat-
terned microchannels and move on to discuss flow-patterns generated by the induced-
charge method.

12.2 Induced-charge electrolytic flow

The charged Debye layer in electrolytes provides a handle to manipulate with electrolytes
by externally applied potentials. The basic physics of the Debye layer was treated in
Section 7.3, and in Chapter 8 we studied electroosmosis, where an electrolyte is brought
in motion by sending an electrical current through it. In the following we will study an
example of the so-called induced-charge electrolytic flow. In contrast to electroosmosis,
where charge is exchanged between the electrolyte and the electrodes providing the exter-
nal potential, no such charge transfer takes place in an induced-charge flow. Instead, the
electric coupling is purely capacitive and motion is brought about by applying AC poten-
tials on electrodes situated at the wall of the microchannels but electrically insulated from
the electrolyte. An example of an actual induced-charge flow device is shown in Fig. 12.2

In the following we study a simple example of an induced-charge system with spatially
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(a) (b)

Figure 12.2: (a) A picture of a polymer-based microfluidic channel with surface electrode
for controlling induced-charge flows. The channel forms a meander with ten turns. A pair
of intercalating gold electrodes are placed at the bottom of the channel. The two contact
pads are seen on the right-hand edge of the chip. (b) The design of the electrode pair.
One set of the electrodes are wide and the other narrow. This spatially asymmetric design
leads to a non-zero time-average of the induced-charge flow initiated when an AC voltage
bias is applied to the electrode pair. Courtesy the group of Bruus at MIC (2004).

symmetric electrodes. Although the problem involves the coupling between the velocity
field v, the pressure field p, the ionic density fields c±, and the electrical potential φ, the
relative simplicity does allow us to find an analytical solution. In such spatial symmetric
systems the time-average of the AC motion is zero, but if the spatial symmetry is broken
it is possible to generate a non-zero average motion. For systems with a zero average
flow, the AC induced-charge method can be used to create mixers of electrolytes, while a
non-zero average can by exploited to design micropumps, admittedly with a low capacity
and efficiency. The following example is a simplified version of a more complete treatment
by Mortensen, Olesen, Belmon and Bruus, Phys. Rev. E 71, 056306 (2005).

12.2.1 The microchannel with surface electrodes

We reconsider the binary electrolyte of Section 7.3 containing ions with charges +Ze and
−Ze, respectively. Like in Fig. 7.3 the electrolyte is confined to the semi-infinite space
x > 0 by an impenetrable, homogeneous and planar wall. However, now the wall is an
insulating layer with dielectric constant εs placed at −d < x < 0, see Fig. 12.3. The
metallic electrode is attached at the back-side of the insulator at x < −d, and it is biased
at the surface x = −d by a spatially modulated, external AC potential Vext(y, t) given by

Vext(y, t) = V0 cos(qy)eiωt, (12.1)

where V0 is the amplitude, q the wavenumber of the spatial modulation, and ω the driving
angular frequency using complex notation as in Section 9.6.

There is complete translation invariance along the z axis, so the z coordinate drops
out of our analysis, and all positions r = xex + yey in the following are therefore just
referring to the xy plane.
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x = λD

x = 0

x = −d

V
ext

(y, t = 0)

−

2π
q
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x

y

Figure 12.3: A sketch of the induced-charge system under study. The binary electrolyte
is situated in the half space x > 0. Below it, for −d < x < 0, is a planar wall consisting of
an insulating dielectric slab of thickness d and below that, for x < −d, is a semi-infinite
conductor. The top surface, x = −d, of the conductor is biased by a periodically modulated
potential Vext(y, t) of period 2π/q (dotted line), which gives rise to the formation of a Debye
screening layer of thickness λD in the electrolyte (dashed line).

12.2.2 Non-equilibrium description

The following analysis combines the methods from Section 7.3 on the electrostatic De-
bye layer and Section 8.1 on the electrohydrodynamic Nernst–Planck transport equation.
We imagine that the intrinsic zeta-potential due to un-passivated surface charges on the
insulator-electrolyte interface has been compensated by a corresponding DC shift, so that
any non-zero potential at the x = 0 wall is entirely due to the applied AC potential.
To simplify further, we treat the insulating layer as a simple capacitor with the surface
capacitance Cs = εs/d per area assumed to be much larger that the Debye capacitance
CD = ε/λD of Eq. (7.39),

CD

Cs

=
ε

εs

d

λD

¿ 1. (12.2)

In the liquid electrolyte we consider the ionic densities c±(r, t), the potential φ(r, t),
the ionic current densities (the ionic flux densities) J±(r, t), the velocity field v(r, t) of the
electrolyte, and the pressure p(r, t). In the following we suppress (r, t) unless needed for
clarity.

The number densities of the ions couple to the potential via Poisson’s equation,

∇2φ = −Ze

ε

(
c+ − c−

)
. (12.3a)

The ionic current densities are coupled to the ionic densities by a continuity equation,
which in the absence of any chemical reactions in the system is

∂tc± = −∇ · J±. (12.3b)
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Spatial modulation q−1 10−5 m
Insulator thickness d 10−8 m
Debye length λD 10−8 m

Resonance frequency ω∗ 105 rad/s
Debye frequency ωD = σ∞/ε 107 rad/s
Critical frequency ωc = (η/ρ) q2 104 rad/s

Thermal voltage VT = (1 + δ)kBT/Ze 250 mV

Convective voltage Vc =
√

(1 + δ)ηD/ε 100 mV

Ionic density c0 10−3 molm−3

Viscosity η 10−3 Pa s
Mass density ρ 103 kgm−3

Ionic diffusivity D 10−9 m2 s−1

Capacitance ratio δ = CD/Cs 10

Table 12.1: Typical values of central parameters in the induced-charge problem.

The presence of convection or of gradients in the densities c± and the electric potential
φ will generate ionic current densities J±. The Nernst–Planck equation gives these currents

J± = −D∇c± + c±v ∓ µc±∇φ, (12.3c)

where, for simplicity, we have assumed that the two types of ions have the same diffusivity
D and the same mobility µ. Note that both the diffusivity D and the electric conductivity
σ are linked to the mobility µ via the Einstein relation D = (kBT/Ze)µ and σ± = Zec±µ,
see Exercise 4.5 and Section 7.2.2.

Finally, the velocity field and pressure of the liquid are coupled to the potential and
ionic densities by the Navier–Stokes equation

ρ
[
∂tv + (v ·∇)v

]
= −∇p + η∇2v − Ze

[
c+ − c−

]∇φ, (12.3d)

where ρ is the mass density, η is the viscosity of the liquid, and p is the pressure. Further-
more, treating the electrolyte as an incompressible fluid we have

∇ · v = 0. (12.3e)

The coupled field-equations, Eqs. (12.3a) to (12.3e), fully govern the physical fields φ, c±,
J±, v, and p.

We now turn to the boundary conditions of the fields, beginning with the poten-
tial. Assuming a vanishing intrinsic zeta-potential and noting that in the extreme limit
CD/Cs → 0 the entire potential drop happens across the Debye layer, the potential φ(r)
of the electrolyte must satisfy the boundary conditions

φ(r, t)
∣∣
x=0

= Vext(y, t) = V0 cos(qy) eiωt, (12.4a)

φ(r, t)
∣∣
x=∞ = 0. (12.4b)
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At the interface between the electrolyte and the insulating region the normal component
of the ionic current density vanishes,

0 = ∂xc±(r, t)
∣∣
x=0

± Ze

kBT
c±(r, t)∂xφ(r, t)

∣∣
x=0

. (12.5)

Here, we have utilized Eq. (12.3c) and the absence of convection at the interface due to
the no-slip boundary condition,

v(r, t)
∣∣
x=0

= 0. (12.6)

For the ionic densities we have charge neutrality in the bulk,

c±(r, t)
∣∣
x=∞ = c0, (12.7)

where c0 is the homogeneous density of either of the two types of ions in the absence of
an external perturbation, i.e., when V0 = 0. For the pressure, we assume that we have no
externally applied pressure gradients so that p is the internal pressure caused by fluid flow
and the electrical forces on the ions.

12.2.3 Linearized dynamic regime, ω > 0

We now solve Eq. (12.3) in the dynamic regime, ω > 0. First the ionic current densities
are eliminated by inserting Eq. (12.3c) into Eq. (12.3b). Using the incompressibility of
the fluid, Eq. (12.3e), we get the continuity equation

∂tc± = D ∇2c± −
(∇c±

)·v ± µ∇·(c± ∇φ
)
. (12.8)

To advance further by analytical methods, we linearize this continuity equation in the
density as follows. Using Eq. (12.7) we write

c±(r, t) = c0 + δc±(r, t), lim
x→∞ δc±(r, t) = 0. (12.9)

Since we assume a zero intrinsic zeta-potential it is a non-zero V0 that spawns δc± 6= 0,
and when the applied voltage V0 is much smaller than the thermal voltage VT , defined by
VT ≡ kBT/Ze ≈ 25 mV, we have |δc±| ¿ c0. In this limit the Debye–Hückel approximation
is valid, and c±∇φ is substituted by c0 ∇φ in Eq. (12.8). We subsequently use Eq. (12.3a)
to replace ∇2φ with −Zeν/ε where

ν ≡ c+ − c− = δc+ − δc−. (12.10)

Finally, we form the difference of the ”±”-versions of Eq. (12.8) and obtain the diffusion
equation for the density difference ν,

∂tν =
[
D∇2 −D

1
λ2

D

− v ·∇
]

ν ≈
[
D∇2 −D

1
λ2

D

]
ν, (12.11)

where we have neglected the convection term. This approximation is valid as the net
charge density is non-zero only in the Debye layer, x . 3λD, and in this region convec-
tion will be suppressed due to the no-slip boundary condition. Thus, convection can be
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neglected, diffusion will dominate (corresponding to a low Péclet number), and the elec-
trodynamics can be solved independently of the hydrodynamics. On the other hand, the
hydrodynamics of course still depends on the electrodynamics via the body force. Since the
density difference ν changes over the length scales λD and q−1 for the x and y directions,
respectively, the condition for the decoupling is |vx|/λD + |vy|q ¿ Dq2 for 0 < x . 3λD.
In this limit Eq. (12.11) has a general cos(qy)eiωt modulated decaying solution of the form

ν = C1e
−κx cos(qy)eiωt, x > 0, (12.12a)

where the decay parameter κ via Eq. (12.11) is seen to depend on the ratio between the
frequency ω and the Debye frequency ωD,

κ ≡ 1
λD

√
1 + (qλD)2 + i

ω

ωD

, (12.12b)

ωD ≡
D

λ2
D

. (12.12c)

For the potential we seek a solution to the Poisson equation Eq. (12.3a) of a form similar
to Eq. (12.12a), φ ∝ cos(qy)eiωt,

∇2φ = (∂ 2
x + q2)φ = −Ze

ε
ν = −Ze

ε
C1e

−κx cos(qy)eiωt. (12.13)

The full solution to this inhomogeneous differential equation is the sum of a particular
solution φ1 ∝ C1e

−κx cos(qy)eiωt and the full solution φ2 to the homogeneous equation
∇2φ = 0, i.e., φ2 ∝ C1e

−qx cos(qy)eiωt. Demanding φ(r, t)
∣∣
x=∞ = 0 the solution becomes

φ =
Ze/ε

q2 − κ2

[
C1e

−κx + C2e
−qx

]
cos(qy)eiωt, x > 0. (12.14)

In order to determine C1 and C2 we first consider the boundary condition for the current.
Applying the Debye–Hückel approximation to the second term in Eq. (12.5) and forming
the difference of the ”±” solutions we arrive at

0 = ∂x

[
ν(r, t) +

ε

Zeλ2
D

φ(r, t)
]∣∣∣

x=0
. (12.15)

Inserting Eqs. (12.12a) and (12.14) into Eq. (12.15) we find

C2 = i
κ

q

ω

ωc
C1. (12.16)

Combining Eqs. (12.4a), (12.14), and (12.16) leads to

C1 =
Ze/ε

λ2
D

ωD + iω

ωD + i κ
q ω

. (12.17)

From the expressions for the coefficients C1 and C2 we get the final results for the potential,

φ(x, y, t) =
V0

ωD + iκ
q ω

(
ωDe−κx + i

κ

q
ωe−qx

)
cos(qy) eiωt, x > 0. (12.18)
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Next, we consider the regime where the spatial period of the modulation is much longer
than all other length scales, i.e., qλD ¿ 1 and qd ¿ 1. We also assume that ω ¿ ωD so
that in the following

κ ' 1
λD

. (12.19)

In this limit we get a simple expression for the potential in the bulk beyond the Debye
layer, x & 3λD, see Fig. 12.4(a) where the fast decaying term e−κx ≈ e−x/λD has vanished,

φ(x, y, t) = V0
iω

ω∗ + iω
e−qx cos(qy) eiωt, x & 3λD, (12.20)

where we have introduced the characteristic resonance frequency ω∗ given by

ω∗ ≡ qλD ωD. (12.21)

Until this point we have used the exponential notation for the temporal dependence.
However, since the electrical body force in the Navier–Stokes equation Eq. (12.3d) is non-
linear due to the product of the potential and the ionic density difference we have to take
the real part to get the body force, i.e., f = −Zeν∇φ = −ZeRe{ν}Re{∇φ}. Utilizing
that

Re
{

eiωt

iω + ω∗

}
Re

{
iωeiωt

iω + ω∗

}
=
− cos(2ωt + ϕ)
2ω∗

(
ω
ω∗ + ω∗

ω

) , (12.22)

we get the following expression for the body force f ,

f = F0 e−x/λD

[
2 cos2(qy)ex + sin(2qy)ey

]
, (12.23a)

where we have introduced the force amplitude F0, the velocity v1, and the frequency
dependent phase shift ϕ,

F0 ≡
ηv1

λ2
D

cos(2ωt + ϕ)
ω
ω∗ + ω∗

ω

, (12.23b)

v1 ≡
qεV 2

0

4η
, (12.23c)

ϕ ≡ − arctan
(

ω

2ω∗
− ω∗

2ω

)
. (12.23d)

At low frequencies, f ∝ ω, it becomes maximal at the resonance frequency ω∗, and
then it falls off again at higher frequencies. We note that limω→0 f = O(

[qλD]2
)
, but

this small force will just be balanced by a pressure gradient so that limω→0 v = 0 and
limω→0 J± = 0.
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Figure 12.4: The potential φ, pressure p, and velocity field v. (a) A gray scale plot of
the amplitude of the potential φ as a function of qx and qy, Eq. (12.20). (b) A gray scale
plot of the pressure p, Eq. (12.34c). Notice the period doubling in the pressure compared
to the electric potential. (c) A snapshot of the harmonically oscillating velocity field v in
the bulk, Eq. (12.34), and (d) likewise in the Debye layer, Eq. (12.29). The flow pattern
contains rolls, which are indicated by contours of constant velocity (dashed lines).

12.2.4 Linearized flow and separation of length scales

In order to solve the Navier–Stokes equation, Eq. (12.3d), we note that for a body force
of small magnitude and with slow temporal variation the fluid response is linear and
the flow will approximately be at steady state at each moment in time. We begin by
comparing the inertial terms on the left-hand side (LHS) with the viscous term (second
term) on the right-hand side (RHS). The body force has a characteristic frequency ω and
two characteristic length scales λD and q−1 for the x and y-directions, respectively. Since
∂t essentially gives a factor of ω, and ∇ essentially gives λ−1

D ex + qey, we can show that
the viscous term dominates over the LHS when ω ¿ ωc where

ωc ≡ η

ρ
min{q2, λ−2

D }. (12.24)

For qλD ¿ 1 this means that ωc = η
ρ q2. In this way, for small Reynolds numbers, we get

the linearized Navier–Stokes equation

0 = −∇p + η∇2v + f , ω ¿ ωc (12.25)

which is the resulting quasi-steady flow problem, linear in the velocity field. Eq. (12.25)
with Eq. (12.23a) can be solved exactly, but in the follwing we restrict ourselves to an
approximate solution based on the separation of length scales, λD ¿ q−1.

From Eq. (12.23a) we note that the electrical body force f Eq. (12.23a) decays in the
x-direction over the short length scale λD, while along the y-direction it varies on the
much longer length scale q−1. Moreover, the no-slip condition forces the velocity v to be
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zero at the wall, but due to shear flow it is much easier for the parallel component vy to
acquire a significant value within the Debye layer than for the perpendicular component
vx. Thus vx ≈ 0 for 0 < x < 3λD, and the x component of the Navier–Stokes equation
becomes

−∂xp + fx = 0 ⇒ p(x, y) = λDF0 2 cos2(qy)e−x/λD . (12.26)

From this we easily find the y component of ∇p,

∂yp = qλDF0 4 cos(qy) sin(qy)e−x/λD = 2λDq fy ¿ fy. (12.27)

So the y component of the Navier–Stokes equation can be approximated by

η(∂ 2
x + ∂ 2

y )vy = −fx = −F0 sin(2qy) e−x/λD . (12.28)

From the functional dependencies we see that |∂ 2
x vy| ≈ |vy|/λ2

D and |∂ 2
x vy| ≈ |vy| q2, and

since qλD ¿ 1 the ∂ 2
y vy-term can be neglected. So by straightforward integration twice

after x and taking the boundary condition vy(0, y, t) = 0 into account we arrive at

vy(x, y) =
λ2

D

η
F0 sin(2qy)

(
1− e−x/λD

)
, for 0 < x . 3λD. (12.29)

In analogy with the EO slip velocity introduced in Eqs. (8.10) and (8.11), we now define
the slip velocity vs(y, t) for the induced-charge flow as the limit at infinity of vy(∞, y, t),

vs(y, t) ≡ v1

cos(2ω t + ϕ)
ω
ω∗ + ω∗

ω

sin(2 q y). (12.30)

We now leave the narrow Debye layer and study the flow in the bulk beyond the
3λD-limit. Here, according to Eq. (12.23a) the body force vanishes, and the Navier–
Stokes equation Eq. (12.25) contains only the pressure and viscosity term. The system of
equations to be solved can be summarized as

(
∂ 2

x + ∂ 2
y

)
v =

1
η

∇p, (12.31a)

vy(0, y, t) = v1

cos(2ω t + ϕ)
ω
ω∗ + ω∗

ω

sin(2 q y), (12.31b)

∇·v = 0. (12.31c)

Taking the divergence of Eq. (12.31a) and using the incompressibility condition ∇·v = 0
we arrive at a Laplace equation for the pressure,

∇2p = 0. (12.32)

The boundary condition Eq. (12.31b) for vy contains a sin(2qy)-factor, so it is natural
to seek a solution for p proportional to cos(2qy), which has the right y-derivative. The
Laplace equation Eq. (12.32) then forces the x dependence e−2qx,

p(x, y) = P0 e−2qx cos(2qy) ⇒ (
∂ 2

x + ∂ 2
y

)
v =

−2qP0

η
e−2qx

(
cos(2qy)ex + sin(2qy)ey

)
.

(12.33)
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Finally, using the trial solutions vx = G(x)e−2qx cos(2qy) and vy = H(x)e−2qx sin(2qy)
we find the solutions for vx, vy, and p,

vx(x, y, t) = −v1

cos(2ω t + ϕ)
ω
ω∗ + ω∗

ω

e−2qx 2qx cos(2qy), (12.34a)

vy(x, y, t) = +v1

cos(2ω t + ϕ)
ω
ω∗ + ω∗

ω

e−2qx (1− 2qx) sin(2qy), (12.34b)

p(x, y, t) = −4qηv1

cos(2ωt + ϕ)
ω
ω∗ + ω∗

ω

e−2qx cos(2qy). (12.34c)

If we now substitute into Eq. (12.3d) we get RHS−LHS ∝ e−x/λD +O(ω/ωD)+O([qλD]2)
which shows that Eq. (12.34) is indeed an excellent approximation to the full solution of
the non-linear time-dependent Navier–Stokes equation, Eq. (12.3d), for x & 3λD. For the
incompressibility constraint, Eq. (12.3e), our solution gives ∇ · v = O([qλD]2).

In Fig. 12.4(c) we show a plot of the velocity field, Eq. (12.34), along with the contours
for constant velocity. It is seen how a complex flow pattern involving counter-rotating rolls
appears.

12.3 Exercises

Exercise 12.1
The diffusion equation for the density difference
In Section 12.2.3 a diffusion equation is set up for the ionic density difference ν.

(a) Derive the continuity equation for the two densities c+ and c−, Eq. (12.8).
(b) Based on this and the Debye-Hückel approximation derive the diffusion equation

for the density difference ν, Eq. (12.11).
(c) Insert the trial solution Eq. (12.12a) for ν into the diffusion equation Eq. (12.11)

and show that the decay parameter κ is given by Eq. (12.12b).

Exercise 12.2
The solution for the electrical potential
In Section 12.2.3 the solution is presented for the electrical potential φ in the linearized
regime.

(a) Why are there two decaying terms present in the solution Eq. (12.14)?
(b) Show, based on Eq. (12.13), that the solution for the potential φ is given by

Eq. (12.14).
(c) Derive the expression Eq. (12.16) for the coefficient C2 by inserting Eqs. (12.12a)

and (12.14) into Eq. (12.15).
(d) Derive the expression Eq. (12.17) for the coefficient C1 by combining Eqs. (12.4a),

(12.14), and (12.16).
(e) Verify expression Eq. (12.20) for the potential φ in the bulk, and make some

representative plots revealing the form of the potential.
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Exercise 12.3
The solution for the flow and pressure fields
In Section 12.2.3 the solutions are presented for the flow field v and the pressure p in the
linearized regime.

(a) Prove that the pressure p indeed must be a solution to the Laplace equation
Eq. (12.32).

(b) Argue why solutions to the Laplace equation must have the form p(x, y) =
P0 e−2qx cos(2qy) as stated in Eq. (12.33).

(c) Show that it is possible to determine the functions G(x) and H(x) such that
the trial solutions vx = G(x)e−2qx cos(2qy) and vy = H(x)e−2qx sin(2qy) indeed solves
the Navier–Stokes equation given in Eq. (12.33). Hint: insert the trial solutions in each
component of the Navier–Stokes equation and obtain simple ordinary differential equations
for G(x) and H(x).

(d) Verify the final expressions Eq. (12.34) for the velocity field v and the pressure p.

Exercise 12.4
Physical interpretation of the flow rolls
Discuss the physical contents of the front page picture or Fig. 12.4. Write down the
chain of physical mechanisms that lead from the applied external potential to the final
induced-charge flow.

12.4 Solutions

Solution 12.1
To be added
In the next edition solutions to the exercises will be added.



Chapter 13

Acoustics in compressible liquids

When acoustic radiation, mainly in the form of ultrasound waves, are propagating in
liquids, the associated fast moving and rapidly oscillating pressure and velocity fields can
impart a slow velocity component to the liquid or to small particles suspended in the
liquid. In microfluidic systems these normally quite minute effects can be of significance.
Interestingly, the origin of these effects can be traced back to two hydrodynamic properties
largely ignored in the preceding chapters, namely the non-linearity of the Navier–Stokes
equation and the compressibility of ordinary liquids.

In this chapter, after establishing the basic equations of motion of the acoustic fields,
we shall in particular study two examples of significant acoustic effects in microfluidic:
acoustic streaming, where the velocity field of the entire liquid acquires an extra slowly
varying component induced by the incoming acoustic waves, and acoustic radiation force,
where small particles suspended in a liquid is moved by the momentum transfer from
sound waves propagating in the liquid.

13.1 Linear equations of motion in acoustics

In contrast to electromagnetism, where the wave equation of the electromagnetic field
follows directly from the basic Maxwell equations, the wave equation for acoustics is only
an approximate equation derived by combining the thermodynamic equation of state,
the kinematic continuity equation Eq. (1.30), and the dynamic Navier–Stokes equation
Eq. (1.46). Discarding all external fields such as gravitation and electromagnetism, the
three equations form the starting point for the theory of acoustics or sound,

p = p(ρ), (13.1a)

∂tρ = −∇·(ρv)
, (13.1b)

ρ∂tv = −∇p− ρ(v·∇)v + η∇2v +
(

1

3
η + ζ

)
∇(∇·v). (13.1c)

These coupled non-linear, partial differential equations are notoriously difficult to solve
numerically, not to mention analytically. Fortunately, in many important cases of physical
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importance, it suffices to solve a linearized version of the equations. The acoustic contribu-
tions to the pressure, density, and velocity fields, are considered to be small perturbations,
p1, ρ1, and v1, to the starting point, a state in thermal equilibrium given by p0, ρ0, and
v0, respectively. For simplicity, we will assume the liquid to be at rest before applying the
acoustic field, i.e., v0 = 0. Hence we are going to work with the expressions

p = p0 + p1 = p0 + c 2
0 ρ1, (13.2a)

ρ = ρ0 + ρ1, (13.2b)
v = 0 + v1. (13.2c)

Note, that for the pressure we have performed a Taylor expansion around p0 = p(ρ0). The
first-order derivative ∂ρp has the dimension of velocity c0 squared,

c 2
0 ≡

(∂p

∂ρ

)
s
. (13.3)

This velocity, which in a more thorough thermodynamic treatment turns out to be the
isentropic derivative of the pressure, will shortly be shown to be the speed of sound in the
liquid.

Let us first consider the zero-order equations that appear when all first-order terms in
Eq. (13.2) are put to zero, and the resulting expressions are inserted intoacoustic Eq. (13.1),

p = p(ρ0) = p0, (13.4a)

∂tρ0 = 0, (13.4b)
0 = −∇p0. (13.4c)

We find that a consistent solution is obtained by having all zero-order terms being constant.
Then we insert both zero and first-order terms from Eq. (13.2) into Eq. (13.1). Clearly,

all terms containing only zero-order terms cancel, as they are solutions to Eq. (13.4). For
the remaining terms we make two simplifications. Firstly, we linearize, i.e., we cancel all
terms containing more than one factor of order 1. This is a good approximation if indeed
the acoustic fields are small. Secondly, we neglect the viscosity of the liquid. Below in
Eq. (13.27) we will show that the damping of the acoustic field induced by viscosity in
fact is a minor effect. As a result we obtain the first-order equations of the acoustic field,

p1 = c 2
0 ρ1, (13.5a)

∂tρ1 = −ρ0∇·v1, (13.5b)

ρ0∂tv1 = −c 2
0 ∇ρ1 (η = ζ = 0), (13.5c)

where we in the Navier–Stokes equation have combined ∇p = ∇p1 with Eq. (13.5a).

13.1.1 The linear acoustic wave equation

From Eq. (13.5) it is easy to obtain the acoustic wave equations by utilizing that the
differential operators ∂t and ∇ commute. The wave equation for ρ1 is obtained by taking
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the divergence of Eq. (13.5c) and inserting Eq. (13.5b) on the resulting left-hand side.
Likewise, the wave equation for v1 is obtained by taking the gradient of Eq. (13.5b) and
inserting Eq. (13.5c) on the resulting left-hand side. Finally, using Eq. (13.5a), the wave
equation for p1 is obtained by dividing the wave equation for ρ1 by c 2

0 . The three resulting
wave equations read

∂ 2
t p1 = c 2

0 ∇2p1, (13.6a)

∂ 2
t ρ1 = c 2

0 ∇2ρ1, (13.6b)

∂ 2
t v1 = c 2

0 ∇2v1. (13.6c)

From these equations follows the interpretation of c0 as the speed of sound.
As the three acoustic fields obey the same wave equation, it is quite natural to seek a

more economical formalism. This is provided by the velocity potential φ(r, t) introduced
in Eq. (11.6) as v = ∇φ. According to Kelvin’s circulation theorem Exercise 11.2, the
velocity potential can be introduced whenever viscosity is negligible, and this is indeed the
case of acoustics. When inserting v1 = ∇φ into Eq. (13.5c) we get ∇(ρ0∂tφ) = ∇(−c 2

0 ρ1)
and thus both ρ1 and p1 = c 2

0 ρ1 can also be expressed by φ,

p1 = −ρ0 ∂tφ, (13.7a)

ρ1 = − ρ0

c 2
0

∂tφ, (13.7b)

v1 = ∇φ. (13.7c)

All fields can thus be obtained from φ, and by inserting Eqs. (13.7b) and (13.7c) into
Eq. (13.5b) we find, not surprisingly, the wave equation for φ to be

∂ 2
t φ = c 2

0 ∇2φ. (13.8)

One simple solution to the wave equation is the plane wave propagating along the wave
vector k = k ek with angular frequency ω,

φ(r, t) = φ0 ei(k·r−ωt). (13.9)

This is a solution to the wave equation, as seen by direct substitution into Eq. (13.8), for
waves fulfilling the acoustic dispersion relation,

ω2 = c 2
0 k2 or ω = c0k. (13.10)

Another class of simple solutions to the wave equation are the standing waves,

φ(r, t) = φk(r) e−iωt. (13.11)

Inserting this in the wave equation (13.8) leads to Helmholtz equation,

∇2φk(r) = −ω2

c 2
0

φk(r) = −k2φk(r), (13.12)

which is an eigenvalue problem that for given boundary conditions allows only certain
values of the wavevector k or frequency ω, and which results in the so-called eigenmodes
or resonance modes φk(r).
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13.1.2 Energy, intensity and momentum of acoustic waves

The acoustic waves carry energy, intensity and momentum. The total energy density
Eac associated with the sound wave can be divided into a kinetic and a potential energy
density, Ekin and Epot, respectively. To lowest order, which in fact is second order, of the
acoustic fields, we have

Ekin = 1

2
ρ0u

2
1 = 1

2
ρ0(∇φ)2. (13.13)

To calculate the potential energy we note that when changing the volume by dV the
acoustic pressure work p1dV is stored as the potential energy density dEpot = −(p1dV )/V .
By integration of these contributions we therefore get to lowest (second) order,

Epot = −
∫ V

V0

dV
p1

V
= −

∫ ρ

ρ0

d(ρ−1)
c 2
0 ρ1

ρ−1
=

∫ ρ1

0
d(ρ1)

c 2
0 ρ1

ρ
≈ 1

2

c 2
0

ρ0

ρ2
1 = 1

2
ρ0

(
1

c 2
0

∂tφ
)2

.

(13.14)
The total energy density in the acoustic field is therefore

Eac = 1

2
ρ0

[
u2

1 + c 2
0

ρ2
1

ρ2
0

]
= 1

2
ρ0

[(
∇φ

)2
+

(
1

c 2
0

∂tφ
)2

]
. (13.15)

Still neglecting damping of the acoustic waves due to viscosity, the energy density must
fulfill a continuity equation,

∂tEac = −∇·JE , (13.16)

which can then be used to determine the acoustic energy current density JE , also known as
the acoustic intensity Iac. Taking the time-derivative of Eac and using the wave equation
for φ along the way, leads to

−∇·JE = ρ0

[
∇φ·∇(∂tφ)+ 1

c 2
0

∂tφ∂ 2
t φ

]
= ρ0

[
∇φ·∇(∂tφ)+∂tφ(∇2φ)

]
= ρ0∇·

[
(∇φ)(∂tφ)

]
,

(13.17)
so the acoustic energy current density JE becomes

JE = −ρ0 (∇φ)(∂tφ). (13.18)

Likewise, we can determine the acoustic momentum current density tensor Jm from
the acoustic momentum density m, which to lowest (first order) is given by

m = ρ0v1. (13.19)

The continuity equation for momentum density tensor becomes

∇ · Jm = −ρ0∂tv1 = −c 2
0 ∇ρ1 −∇ · (c 2

0 ρ1I
)
, (13.20)

and thus (
Jm

)
ij

= c 2
0 ρ1δij = p1δij . (13.21)
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13.1.3 Viscous damping of acoustic waves

Hitherto, we have neglected viscous damping. By maintaining non-zero viscosities in
Eq. (13.1c), the first-order part of the Navier–Stokes equation (13.5c) becomes

ρ0∂tv1 = −c 2
0 ∇ρ1 + η∇2v1 +

(
1

3
η + ζ

)
∇(∇·v1). (13.22)

The modified wave for ρ1 is obtained by taking the divergence of Eq. (13.22) and sub-
stituting ∇ · v1 using Eq. (13.5b) in the resulting equation. For the viscous terms we
get

∇·
[
η∇2v1 +

(
1

3
η + ζ

)
∇(∇·v1)

]
=

(
4

3
η + ζ

)
∇2(∇·v1) = − η̃

ρ0

∇2(∂tρ1), (13.23)

where we for brevity have introduced the constant

η̃ ≡ 4
3
η + ζ. (13.24)

The wave equation for ρ1 with viscous damping thus becomes,

∂ 2
t ρ1 = c 2

0 ∇2ρ1 +
η̃

ρ0

∇2(∂tρ1). (13.25)

Assuming harmonically varying time-dependencies as in Eqs. (13.9) and (13.11), we get
∂tρ1 = −iωρ1 and obtain a Helmholtz equation with a complex prefactor,

−ω2ρ1 = c 2
0

[
1− i

η̃ω

c 2
0 ρ0

]
∇2ρ1. (13.26)

we note that for ultrasound waves with ω = 106 s−1 in water, the complex correction α is
quite small,

α ≡ η̃ω

c 2
0 ρ0

≈ 10−3 Pa s× 106 s−1

(
103 m s−1

)2 × 103 kg m−3
= 10−6 ¿ 1, (13.27)

So by a first-order Taylor expansion we arrive at the modified Helmholtz equation

∇2ρ1 = −ω2

c 2
0

[
1 + i

η̃ω

2c 2
0 ρ0

]2

ρ1 = −(k0 + iκ)2 ρ1, (13.28)

where

k0 =
ω

c0

≈ 103 m−1, κ =
η̃ω2

2c3
0ρ0

≈ 10−3 m−1. (13.29)

The tiny positive imaginary part implies damping. This attenuation of the acoustic
wave is most clearly seen by studying a plan wave of the form ρ1 ∝ exp[i(k̃x − ωt)] =
exp[i(k + iκx− ωt)] = exp[i(kx− ωt)] exp[−κx].
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13.2 Second order equation of motion in acoustics

The linear theory of acoustics just presented offers no possibilities of achieving a DC drift
velocity due to the presence of acoustic waves. The reason is that in a linear theory the
harmonic drive exp(−iωt) enters all terms, which consequently have a zero time-average
over a full period. However, the Navier–Stokes equations are non-linear, and expanding it
to second order will introduce products of two factors exp(−iωt), products that have the
time-average 1

2 over a full period. Including the second-order terms in Eq. (13.2) leads to

p = p0 + p1 + p2, (13.30a)
ρ = ρ0 + ρ1 + ρ2, (13.30b)
v = 0 + v1 + v2. (13.30c)

Combining Eqs. (13.1) and (13.30) we obtain the second-order equation of motion for
the acoustic field,

p2 = c 2
0 ρ2 + 1

2

(
∂ρc

2
)
0
ρ2
1 , (13.31a)

∂tρ2 = −ρ0∇·v2 −∇·(ρ1v1), (13.31b)

ρ0∂tv2 = −c 2
0 ∇ρ2 − ρ1∂tv1 − ρ0(v1 ·∇)v1 − 1

2

(
∂ρc

2
)
0
∇ρ2

1 + η∇2v2 +
(

η

3
+ζ

)
∇(∇·v2).

(13.31c)

13.2.1 Acoustic streaming

If we assume that the time-dependence of all first-order fields is harmonic, e−iωt, then
Eq. (13.31) has solutions for ρ2 and v2 with a non-zero time-averages for 〈ρ2〉 6= 0 and
〈v2〉 6= 0. In other words, the oscillating acoustic field imparts a time-independent compo-
nent to the density and velocity field of the liquid. This phenomena is known as acoustic
streaming, and an experimental example of this is shown in Fig. 13.1.

According to Exercise 9.7 the time-average of a product is given by 〈A(t)B(t)〉 =
1
2 Re

[
A0B

∗
0

]
, we find the time-average of Eq. (13.31b) to be

∇·〈v2〉 = − 1

ρ0

∇·〈ρ1v1〉, (13.32)

while that of Eq. (13.31c), after taking the divergence and inserting Eq. (13.32), becomes

∇2〈ρ2〉 = − 1

2c 2
0

(
∂ρc

2
)
0
∇2〈ρ2

1〉 − ρ0

c 2
0

∇·〈(v1 ·∇)v1〉+ i
ω

c 2
0

〈ρ1∇·v1〉 − η̃

ρ0c
2
0

∇2
(∇·〈ρ1v1〉

)
.

(13.33)
To estimate the time-averaged speeds 〈v2〉 one can hope to obtain using acoustic

streaming, one can assume plane wave solutions for the first-order fields. The calculations
are straight forward, and using the usual parameters for water and an ultrasound frequency
of the order 1 MHz, one finds |〈v2〉| ≈ 10 µm/s in agreement with the measurements
presented in Fig. 13.1(a).
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Figure 13.1: (a) Top view of the steady-state acoustic streaming velocities (white arrows) of
water inside a 200 µm deep, glass-lid covered, square silicon microchamber after turning on
a f = 2.17 MHz piezo-actuator emitting ultrasound through the chamber from below. The
liquid motion is detected by particle-image velocimetry on a = 500 nm beads suspended in
the liquid. (b) Gray-scale plot of the numerical solution to the Helmholtz equation (13.12)
with ω/(2π) = 2.417 MHz and Neumann boundary conditions. The pressure nodes are
marked by thin black lines. Note how the streaming vortices in the experiment is period-
doubled compared to the pressure field. Courtesy Sundin, Jensen, Bruus and Kutter, MIC
2006.

13.2.2 Acoustic radiation force

The second effect concerns the motion of suspended particles due to the radiation force
from the acoustic fields. The radiation force stems from the momentum transferred from
the incoming ultrasound wave to the particle. In the following we will not go through a
complete calculation of the radiation pressure on a bead suspended in a liquid. Instead, we
will restrict our analysis to the simple case of the partial transmission and reflection of a
plane wave moving along the x-axis hitting an interface at x = 0 between two semi-inifinite
media, medium a for x < 0 and medium b for x > 0.

Let the wave be described by the normalized velocity potential φ(x, t) given by

φ(x, t) =
{

φa(x, t) = ei(kax−ωt) + Aei(−kax−ωt), for x < 0,

φb(x, t) = Bei(kbx−ωt), for x > 0.
(13.34)

The incoming wave has unity amplitude, the reflected and transmitted waves have am-
plitudes A and B, respectively. To find A and B we employ the boundary conditions
corresponding to continuous pressure and continuous velocity at the interface. By use
of Eqs. (13.7a) and (13.7c) these boundary conditions can be formulated in terms of the
velocity potential as

ρa∂tφa(0, t) = ρb∂tφb(0, t), (13.35a)
∂xφa(0, t) = ∂xφb(0, t). (13.35b)
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Figure 13.2: (a) Top view of the acoustic radiation-force induced, initial velocities (white
arrows) of a = 5 µm beads inside a 200 µm deep, glass-lid covered, water-filled, circular
silicon microchamber just after turning on a f = 2.417 MHz piezo-actuator emitting
ultrasound through the chamber from below. Also shown are the steady-state positions of
the beads (bands of black spots) at the pressure nodes of the acoustic field. (b) Gray-scale
plot of the numerical solution to the Helmholtz equation (13.12) with ω/(2π) = 2.417 MHz
and Neumann boundary conditions. The pressure nodes are marked by thin black lines.
Courtesy Sundin, Jensen, Bruus and Kutter, MIC 2006.

With the plane wave Eq. (13.34) the derivatives are simple, and we get

1 + A =
ρb

ρa
B, (13.36a)

1−A =
kb

ka
B. (13.36b)

Solving for A and B we get

A =
ρb
ρa
− kb

ka

ρb
ρa

+ kb
ka

, (13.37a)

B =
2

ρb
ρa

+ kb
ka

. (13.37b)

Already this little calculations demonstrate the central role played by the density ratio,
ρb/ρa, and the wavenumber or inverse speed of sound ratio, kb/ka = ca/cb.

For the more complicated case of a spherical particle of radius a in a standing acoustic
pressure field p(x, t) = p0 sin(kx)eiωt, like the experimental result shown in Fig. 13.2, sim-
ilar principles are used in the calculation. However, as with the case of acoustic streaming,
it is necessary to use the second-order acoustic field to obtain the end-result, the average
radiation pressure 〈psph〉 acting on the particle. The result is

psph(x) =

[
5
3

ρ∗
ρ − 2

3

1 + 2ρ∗
ρ

−
(

k∗
k

)2

3ρ∗
ρ

]
πa2(4ka)〈Eac〉 sin

(
2kx

)
, (13.38)

where unmarked and star-marked quantities refer to the liquid and the particle, respec-
tively, and 〈Eac〉 is the average energy density of the incoming acoustic wave. It should be
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noted that the sign of prefactor determines whether a particle is moved towards pressure
nodes or pressure anti-nodes.

13.3 Exercises

Exercise 13.1
To be added
In the next edition exercises in acoustics will be added.

13.4 Solutions

Solution 13.1
To be added
In the next edition solutions to the exercises will be added.
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Appendix A

Curvilinear coordinates

In this appendix we present the explicit coordinate representations of the equation of
motion in Cartesian, cylindrical polar, and spherical polar coordinates. The choice of
coordinates for solving a given problem is often dictated by the symmetry of the boundary
conditions.

A.1 Cartesian coordinates

In Cartesian coordinates x, y, and z the position vector r of a point is given by

r = xex + yey + zez, (A.1)

where the vectors ex, ey, and ez are independent of the coordinates (x, y, z) and form an
orthonormal basis, i.e., ei ·ej = δij for i, j = x, y, z.

Any scalar function S depends on the three coordinates as

S = S(r) = S(x, y, z), (A.2)

while any vector function V(r) takes the form

V = V(r) = exVx(x, y, z) + eyVy(x, y, z) + ezVz(x, y, z). (A.3)

The differential operator ∇, denoted nabla, is defined as

∇ ≡ ex∂x + ey∂y + ez∂z, (A.4)

Note that the differential operators ∂i are written to the right of the basis vectors. While
not important in Cartesian coordinates it is crucial when working with curvilinear coor-
dinates. Once nabla has been introduced we can proceed and write down a number of
important derivatives of scalar and vector functions.
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A.1.1 Single derivatives

For a scalar function S only one quantity can be formed using the nabla operator, namely
the gradient ∇S, which is a vector,

∇S = ex(∂xS) + ey(∂yS) + ez(∂zS). (A.5)

For a vector functionV three quantities can be formed using the nabla operator. They are
relatively simple to derive as the three basis vectors are independent of the coordinates.
First, the divergence ∇·V of a vector is a scalar,

∇·V = ∂xVx + ∂yVy + ∂zVz, (A.6)

second, the rotation ∇×V of a vector is a vector,

∇×V = ex(∂yVz − ∂zVy) + ey(∂zVx − ∂xVz) + ez(∂xVy − ∂yVx), (A.7)

and third, the gradient ∇V of a vector is a tensor

∇V = + (∂xVx)exex + (∂xVy)exey + (∂xVz)exez

+ (∂yVx)eyex + (∂yVy)eyey + (∂yVz)eyez

+ (∂zVx)ezex + (∂zVy)ezey + (∂zVz)ezez. (A.8)

A.1.2 Double derivatives

The well-known Laplacian operator ∇2 acting on a scalar function S is a scalar,

∇2S = ∂ 2
x S + ∂ 2

y S + ∂ 2
z S, (A.9)

and the Laplacian acting on a vector function V is likewise a vector,

∇2V = ex∇2Vx + ey∇2Vy + ez∇2Vz. (A.10)

A.1.3 Integrals

When integrating over the entire 3D space the integral takes the following form in Cartesian
coordinates ∫

all
dr f(r) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz f(x, y, z). (A.11)

A.2 Cylindrical polar coordinates

As sketched in Fig. A.1, choosing the z-axis as the cylinder axis, the cylindrical polar
coordinates r, φ, and z are related to the Cartesian coordinates x, y, and z by

x = r cosφ, (A.12a)
y = r sinφ, (A.12b)
z = z, (A.12c)
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z

x
y

z

r
φ

ez

e
φ

er

x = r cos φ

y = r sin φ

z = z

er = + cos φ ex + sin φ ey

eφ = − sin φ ex + cos φ ey

ez = ez

Figure A.1: The cylindrical polar coordinates (r, φ, z) and the associated orthonormal
basis vectors er, eφ, and ez.

defined in the intervals 0 ≤ r < ∞, 0 ≤ φ ≤ 2π, and 0 ≤ z < ∞. The associated basis
vectors er, eθ, and eφ are given by the derivatives of the Cartesian position vector r of
Eq. (A.1) with respect to the cylindrical polar coordinates as

er ≡ ∂rr = + cosφ ex + sinφ ey, (A.13a)

eφ ≡
1
r

∂φr = − sinφ ex + cosφ ey, (A.13b)

ez ≡ ∂zr = ez. (A.13c)

Note that the two basis vectors er and eφ depend on the coordinate φ, but all three vectors
nevertheless form an orthonormal basis, i.e., ei ·ej = δij for i, j = r, φ, z.

Any scalar function S depends on the three coordinates as

S = S(r) = S(r, φ, z), (A.14)

while any vector function V(r) takes the form

V = V(r) = erVr(r, φ, z) + eφVφ(r, φ, z) + ezVz(r, φ, z). (A.15)

Using the chain rule of differentiation and Eq. (A.13) the nabla operator of Eq. (A.4)
can be transformed to cylindrical polar coordinates,

∇ ≡ er∂r + eφ

1
r

∂φ + ez∂z. (A.16)

In contrast to Cartesian coordinates, as noted above, the basis vectors of the cylindrical
polar coordinates depend on the coordinates; in fact er and eφ both depend on φ leaving
us with two non-vanishing derivatives of the basis vectors,

∂φer = eφ, and ∂φeφ = −er. (A.17)

Based on Eqs. (A.16) and (A.17) we can calculate the various derivatives in cylindrical
polar coordinates.
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A.2.1 Single derivatives

For a scalar function S only one quantity can be formed using the nabla operator, namely
the gradient ∇S, which is a vector,

∇S = er(∂rS) + eφ

1
r
(∂φS) + ez(∂zS). (A.18)

For a vector functionV three quantities can be formed using the nabla operator. Due to
the dependence of the basis vectors on the coordinate φ, the expressions in cylindrical
polar coordinates for these three quantities are slightly more complicated than those of
the Cartesian coordinates. First, the divergence ∇·V of a vector yielding a scalar,

∇·V =
1
r

∂r(rVr) +
1
r

∂φVφ + ∂zVz, (A.19)

second, the rotation ∇×V of a vector yielding a vector,

∇×V = er

(1
r

∂φVz − ∂zVφ

)
+ eφ

1
r

(
∂zVr − ∂rVz

)
+ ez

1
r

(
∂r

[
rVφ

]− ∂φVr

)
, (A.20)

and third, the gradient ∇V of a vector is a tensor, which, however, we will not present
here.

A.2.2 Double derivatives

In cylindrical polar coordinates the Laplacian operator ∇2 acting on a scalar function S
is the following scalar,

∇2S =
1
r

∂r

(
r∂rS

)
+

1
r2

∂ 2
φ S + ∂ 2

z S. (A.21)

Taking the φ-dependence of the basis vectors into account, we obtain the vector resulting
from applying the Laplacian on a vector function V,

∇2V = er

(
∇2Vr −

2
r2

∂φVφ −
1
r2

Vr

)
+ eφ

(
∇2Vφ +

2
r2

∂φVr −
1
r2

Vφ

)
+ ez

(
∇2Vz

)
,

(A.22)

where the Laplacian acting on the scalar components Vi, i = r, φ, z is calculated from
Eq. (A.21).

A.2.3 Integrals

When integrating over the entire 3D space the integral takes the following form in cylin-
drical polar coordinates

∫

all
dr f(r) =

∫ ∞

0
dr

∫ 2π

0
dφ

∫ ∞

−∞
dz r f(r, φ, z). (A.23)
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z

x
y

θ

r

φ

er

eφ

eθ

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

er = sin θ cos φ ex + sin θ sin φ ey + cos θ ez

eθ = cos θ cos φ ex + cos θ sin φ ey − sin θ ez

eφ = − sinφ ex + cos φ ey

Figure A.2: The spherical polar coordinates (r, θ, φ) and the associated orthonormal basis
vectors er, eθ, and eφ.

A.3 Spherical polar coordinates

The spherical polar coordinates r, θ, and φ are related to the Cartesian coordinates x, y,
and z by

x = r sin θ cosφ, (A.24a)
y = r sin θ sinφ, (A.24b)
z = r cos θ, (A.24c)

as sketched in Fig. A.2. They are defined in the intervals 0 ≤ r < ∞, 0 ≤ θ ≤ π, and
0 ≤ φ ≤ 2π. The associated basis vectors er, eφ, and ez are given by the derivatives of the
Cartesian position vector r of Eq. (A.1) with respect to the spherical polar coordinates as

er ≡ ∂rr = + sin θ cosφ ex + sin θ sinφ ey + cos θ ez, (A.25a)

eφ ≡
1
r

∂θr = + cos θ cosφ ex + cos θ cosφ ey − sin θ ez, (A.25b)

ez ≡
1

r sin θ
∂φr = − sinφ ex + cosφ ey. (A.25c)

Note that all three basis vectors depend on the coordinates θ and φ, but that they never-
theless form an orthonormal basis, i.e., ei ·ej = δij for i, j = r, θ, φ.

Any scalar function S depends on the three coordinates as

S = S(r) = S(r, θ, φ), (A.26)

while any vector function V(r) takes the form

V = V(r) = erVr(r, θ, φ) + eφVθ(r, θ, φ) + eφVφ(r, θ, φ). (A.27)

Using the chain rule of differentiation and Eq. (A.25) the nabla operator of Eq. (A.4)
can be transformed to spherical polar coordinates,

∇ ≡ er∂r + eθ

1
r

∂θ + eφ

1
r sin θ

∂φ. (A.28)
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In the case of spherical polar coordinates the dependence of the basis vectors on the
coordinates θ and φ leads to five non-vanishing derivatives of the basis vectors,

∂θer = +eθ, ∂φer = + sin θ eφ, (A.29a)

∂θeθ = −er, ∂φeθ = + cos θ eφ, (A.29b)

∂φeφ = − sin θ er − cos θ eθ. (A.29c)

Based on Eqs. (A.28) and (A.29) we can calculate the various derivatives in spherical polar
coordinates.

A.3.1 Single derivatives

For a scalar function S only one quantity can be formed using the nabla operator, namely
the gradient ∇S, which is a vector,

∇S = er∂rS + eθ

1
r

∂θS + eφ

1
r sin θ

∂φS. (A.30)

For a vector functionV three quantities can be formed using the nabla operator. Due
to the dependence of the basis vectors on the coordinate φ, the expressions in spherical
polar coordinates for these three quantities are slightly more complicated than those of
the Cartesian coordinates. First, the divergence ∇·V of a vector yielding a scalar,

∇·V =
1
r2

∂r

(
r2Vr

)
+

1
r sin θ

∂θ

(
sin θ Vθ

)
+

1
r sin θ

∂φVφ, (A.31)

second, the rotation ∇×V of a vector yielding a vector,

∇×V = er

1
r sin θ

(
∂θ

[
sin θVφ

]−∂φVθ

)
+eθ

1
r

( 1
sin θ

∂φVr−∂r

[
rVφ

])
+eφ

1
r

(
∂r

[
rVθ

]−∂θVr

)
,

(A.32)
and third, the gradient ∇V of a vector is a tensor, which, however, we will not present
here.

A.3.2 Double derivatives

In spherical polar coordinates the Laplacian operator ∇2 acting on a scalar function S is
the following scalar,

∇2S =
1
r2

∂r

(
r2∂rS

)
+

1
r2 sin θ

∂θ

(
sin θ ∂θS

)
+

1
r2 sin2 θ

∂ 2
φ S. (A.33)

Taking the angular dependence of the basis vectors into account, we obtain the vector
resulting from applying the Laplacian on a vector function V,

∇2V = er

(
∇2Vr −

2
r2 sin2 θ

∂θ

[
sin θ Vθ

]− 2
r2 sin θ

∂φVφ −
2
r2

Vr

)

+ eθ

(
∇2Vθ −

2 cos θ

r2 sin2 θ
∂φVφ +

2
r2

∂θVr −
1

r2 sin2 θ
Vθ

)

+ eφ

(
∇2Vφ +

2
r2 sin θ

∂φVr +
2 cos θ

r2 sin2 θ
∂φVθ −

1
r2 sin2 θ

Vφ

)
, (A.34)
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where the Laplacian acting on the scalar components Vr, Vθ, and Vφ is calculated from
Eq. (A.33).

A.3.3 Integrals

When integrating over the entire 3D space the integral takes the following form in spherical
polar coordinates

∫

all
drf(r) =

∫ ∞

0
dr

∫ π
2

−π
2

dθ

∫ ∞

0
dz r2 sin θf(r, θ, φ) =

∫ ∞

0
dr

∫ 1

−1
d(cos θ)

∫ ∞

0
dz r2f(r, cos θ, φ).

(A.35)
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Appendix B

Physical constants

In this appendix we a few tables containing the values of physical constants of interest to
microfluidics.

B.1 Water

density 1.0×103 kg m−3

viscosity 1.0×10−3 Pa s
surface tension 72.9×10−3 J m−2

Table B.1: Table of various physical constants relating to water at 20◦C.

t [◦C] 0 5 10 15 20 25 30 35 40 45
η [mPa s] 1.787 1.519 1.307 1.139 1.002 0.8904 0.7975 0.7194 0.6529 0.5960

t [◦C] 50 55 60 65 70 75 80 85 90 95 100
η [mPa s] 0.5468 0.5040 0.4665 0.4335 0.4042 0.3781 0.3547 0.3337 0.3147 0.2975 0.2818

Table B.2: Table of the viscosity η of water as a function of the temperature t in centigrades
[CRC Handbook p. F-51]

B.2 Diffusivity

D ≈ 2× 10−9 m2/s, small ions in water, (B.1a)

D ≈ 4× 10−11 m2/s, 30-mer DNA molecules in water, (B.1b)

D ≈ 1× 10−12 m2/s, 5000-mer DNA molecules in water, (B.1c)

229
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ions at T = 25◦C H+ Ag+ K+ Li+ Na+ Br− Cl− F− I− OH−

mobility µion 36.2 6.42 7.62 4.01 5.19 8.09 7.91 5.70 7.96 20.6[
10−8 m2 (V s)−1

]

diffusivity Dion 9.31 - 1.96 1.03 1.33 2.08 2.03 1.46 2.05 5.30[
10−9 m2 s−1

]

Table B.3: Experimental values for ionic mobility and diffusivity for small ions in aqueous
solutions at small concentrations. Note how H+ and OH− have significantly different
values due to their special modes of propagation by exchange of electron orbitals with the
neutral water molecules.

B.3 Contact angle

liquid γ [mJ/m2] liquid solid θ

water 72.9 water SiO2 52.3◦

mercury 486.5 water glass 25.0◦

benzene 28.9 water Au 0.0◦

methanol 22.5 water Pt 40.0◦

blood ∼60.0 water PMMA 73.7◦

mercury glass 140.0◦

Table B.4: Measured values of the surface tension γ at liquid-vapor interfaces and of the
contact angle θ at liquid-solid-air contact lines. All values are at 20 ◦C.

B.4 Add your own constants here
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acceleration
Poiseuille flow, 83
sphere in a viscous fluid, 80
time scale for fluids, 80

acoustics, 211
damping by viscocity, 215
energy, intensity and momentum, 214
equations of motion, 211
first-order terms, 212
radiation force, 217
second-order theory, 216
streaming, 216
wave equation, 212
zero-order terms, 212

anion exchange membrane, 148
ANSYS, 109
arbitrary cross-section, Poiseuille flow, 24
atmosphere, thickness of, 21

back-pressure in EO flow, 145
back-step flow geometry, 54
backstep flow geometry, 116
basis functions in FEM, 111
Bessel functions, 79, 131
biological cells, 165
biomolecular surface coating, 174
body force, definition, 12
Bond number Bo, 99
boundary condition

flat two-fluid interface, 182
gas bubbles in microfluidic channels, 188
no-slip at walls, 19
on axis of a cylinder, 28
stopping Poiseuille flow, 78
two-fluid interface waves, 183

Brownian motion, 81
bubbles

motion in microfluidic channels, 188

C-programming, 109

capacitance of Debye layer, 131
capacitance, hydraulic, 56, 59
capillary

effect, 96
length, water-air interface, 96
pump, 99
rise height, 97
rise time, 98

capillary number Ca, 99
capillary waves, 187

dispersion relation, 183
Cartesian coordinates, 221
cascade EO pump, 151
CFDACE, 109
charge density

co- and counter-ions, graph, 128
planar Debye layer, 130

charging time of Debye layer, 133
chemical potential, 128
Clausius–Mossotti factor

AC DEP force, 166
DC DEP force, 162
definition, 161

co-ions, 128
complementary error function, 70
complex dielectric function, 166
complex flow patterns, 199
compliance

definition, 56
equivalent circuit theory, 58

compressible fluids, 10
compressible liquids, 211
COMSOL

a short introduction, 114
running scripts, 115

COMSOL Multiphysics, 109
conductivity due to ions, 127
constant planar-source diffusion, 70
contact angle

definition, 94
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values, 94, 230
Young’s equation, 95

continuity equation
charge, 11
mass, 9
solutes, 68

continuum description, Debye layer, 128
continuum hypothesis, 4
convection roll, 54
convection-diffusion equation

derivation, 67
Taylor dispersion, 74

convective current density, 68, 141
counter-ions, 128
Coventor, 109
cross product of vectors, 9
current density

convective, 68, 141
diffusive, 68, 141
electrical, 141

Curvilinear coordinates, 221
Cylindrical polar coordinates, 222

damping of acoustic waves, 215
Debye layer

basic concept, 128
basic concepts, 127
capacitance, 131
charging time, 133
cylindrical case, 131
Debye–Hückel approximation, 130
electrophoresis, 133
overlap, 144
planar case, 130
potential, analytic form in 1D, 129
spherical case, 134
surface charge, 131

Debye layer, Gouy–Chapman solution, 129
Debye length

definition of λD, 129
graphical representation, 128

Debye–Hückel approximation
cylindrical case, 131
definition, 130
planar case, 130
spherical case, 134

deceleration of Poiseuille flow, 78
density

basic concept, 5

water at 20◦C, 3
DEP force

AC driven, 165
Clausius–Mossotti factor, ac, 166
Clausius–Mossotti factor, dc, 162
derivation, 162
versus Stokes drag force, 164

DEP trapping of particles, 162
DEP, dielectrophoresis, 157
derivative, notation, 8
dielectric constant, 125
dielectric fluid, 157
dielectric function, complex values, 166
dielectric sphere, 157
dielectrophoresis

definition, 157
dielectrophoretic force

on dielectric sphere, 162
diffusion

Brownian motion, 81
convection-diffusion equation, 67
current density, 68
Einstein relation, 81
equation for matter, 69
H-filter, 72
length, 66, 69
momentum, 71
random walk model, 65
sphere in a viscous fluid, 81
time, 66, 69

diffusion constant
momentum (kinematic viscosity), 71
random walk, 67
solutes in a solvent, 68
values, 69, 229

diffusive current density, 68, 141
diffusivity of ions, 127, 230
dimensionless form of

capillary rise, 98
convection-diffusion equation, 75
Navier–Stokes equation, 52

dimensionless number
Bond Bo, 99
capillary Ca, 99
Péclet Pe, 75
Reynolds Re, 52
Schmidt Sc, 71
Stokes NSt, 99

dipole force, 157
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dipole moment, 124, 158
induced, 157

Dirac delta function, 69
Dirichlet boundary condition, 110
displacement field, 125
dissipation of energy, 43
DNA

diffusion constant, 69
electrophoresis, 126

effective Reynolds number Reeff , 54
Einstein relation, diffusion, 81
Einstein summation convention, 7
electric gradient tensor, 157
electric susceptibility, 125, 157
electrical body force, 12
electrical current density, 123, 141
electrohydrodynamics

basic concepts, 123
transport theory, 141

electrokinetic effects, 125
electrolysis, 149
electrolyte near a wall, 128
electroosmosis

back-pressure and EO flow, 145
definition, 125
EO mobility, 143
EO pressure and flow rate, 147
EO velocity, 143
ideal EO flow, 142
introduction, 141
Navier–Stokes equation, cylindrical, 131
Navier–Stokes equation, planar, 143
Poiseuille and EO flow, 145

electroosmotic pressure, 147
electrophoresis

Debye layer screening, 133
definition, 125

electrophoretic velocity, 126
electrostatic Maxwell equations, 123
energy density, 5
energy dissipation, 43
energy of acoustic waves, 214
EO micropump, 59, 149
EO, electroosmosis, 141
equilibrium

chemical potential, 129
Gibbs free energy, 91
fields, 141

equivalent circuit theory, 58
erfc(s), 70
Eulerian description of velocity fields, 5
external fields, 141

FEM, finite element method, 110
Fick’s law, 68
fields and fluids, basic concepts, 2
fields in equilibrium, 141
fintite element method (FEM), 110
flow

capillary, 99
complex patterns, 199
convection-diffusion, 67, 74
Couette flow, 22
ideal electroosmotic flow, 142
induced-charge electrolytic flow, 200
liquid film on inclined plane, 21
past a back-step, 54
Poiseuille flow, 23
potential flow, 183, 197
pressure-driven in patterned channels, 199
Stokes flow around a sphere, 34
stopping a Poiseuille flow, 78

flow rate, definition, 25
flow rate-pressure characteristic, 147
fluid particles

definition, 4
forces on, 11

fluids and fields, basic concepts, 2
fluids in mechanical equilibrium, 19
fluids: liquids and gases, 3
force density, 5
forces on fluid particles, 11
Fortran, 109
Fourier series for velocity field, 29
Fourier-Bessel series for velocity field, 79
free EO flow rate Qeo, 147
frictional force, 13
frit, 148
frit-based EO pump, 149

Galerkin method in FEM, 112
gas

basic concept, 2
bubbles from electrolysis, 149
density, typical value, 3
liquid-gas interface, 92
Young–Laplace bubble pressure, 93
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gas bubbles
motion in microfluidic channels, 188

Gauss’s theorem, 10, 12
Gibbs free energy

equilibrium considerations, 91
Young’s equation, 95
Young–Laplace equation, 93

Gouy–Chapman solution, 129
graphical user interface, COMSOL, 114
gravitational body force, 12
gravity waves, 183

interface of confined liquids, 186
on a free surface, 183

GUI in COMSOL, 114

H-filter, separation by diffusion, 72
Hagen–Poiseuille law, 43
heat generated by viscous friction, 45
heuristic argument for DEP force, 158
homogeneous differential equation, 27, 30
hybrid polymer/silicon system, 2
hydraulic conductance

definition, 43
hydraulic impedance, 59
hydraulic resistance

definition, 43
equivalent circuit theory, 58
for some straight channels, 47
parallel coupling, 56
series coupling, 55

hydrostatic pressure
compressible liquid, 20
incompressible liquid, 20

impedance, hydraulic, 59
inclined plane

Navier–Stokes equation, 21
incompressible fluids, 11

viscous dissipation of energy, 43
index notation, 7
induced dipole moment

definition, 157
in dielectric sphere, 159, 161

induced-charge electrolytic flow, 200
induced-charge flow device, 201
inductance, hydraulic, 59
inertia force, 52
inhomogeneous differential equation, 27, 30
initial condition

limitied planar-source diffusion, 70
limitied point-source diffusion, 69
stopping Poiseuille flow, 78

integrals, notation in 3D, 8
integrated microfluidic system, 2
intensity of acoustic waves, 214
inter-molecular forces, 3
interface energy and surface tension, 92
ionic conductivity, 127
ionic mobility, 127, 230

Jacobian determinant, 26
Joule heating, 46

kinematic viscosity
definition, 71
water at 20◦C, 71

kinetic energy, rate of change, 44
Kirchhoff’s laws in fluidics, 58
Kronecker delta δij , 8

lab-on-a-chip systems
basic concepts, 1
bio-sensor chip, capillary pump, 100
chemo-optical chip, 2
chip with hydrostatic pressure, 20
DEP trap, 165
induced-charge flow device, 201
laser ablation on PMMA chip, 24
microfluidic dye laser, 46
microreactor on PMMA chip, 29
surface electrode pump, 133

Lagrangian description of velocity fields, 5
Laplace equation, 160
Laplace operator

Cartesian coordinates, 8
cylindrical coordinates, 27

laser, 2
laser ablation, PMMA channel fabrication, 24
Legendre polynomial, 160
Lennard–Jones potential, 3
Levi–Civita symbol εijk, 9
limited planar-source diffusion, 70
limited point-source diffusion, 69
linear response theory, 141
liquid

basic concept, 2
dielectric fluid, 157

LOC, lab-on-a-chip, 1
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magnetic dipole moment, 176
magnetic force on magnetizable object, 177
magnetic microbeads, 173
magnetic potential, 177
magnetic separation, 174
magnetic susceptibility, 176
magnetization, 176
magnetophoresis, 173

basic equations, 177
bioanalysis, 173
lab-on-a-chip systems, 178

magnetostatics, 175
MAP force, 177
MAP, magnetophoresis, 173
Marangoni effect, 102
mass density, 5
mass flow rate, 25
material (substantial) time-derivative Dt, 12
Mathematica, 109
Maxwell’s equations, electrostatic, 123
mechanical equilibrium, 19
MEMS, microelectromechanical, 1
mesoscopic regime, 5
micro propulsion by Marangoni effect, 102
microbeads, 173
microelectromechanical, MEMS, 1
microfluidics

definition of, 1
dye laser, 46
importance of surface effects, 2
integrated systems, 2

mixer, 2
mobility of ions, 127, 230
momentum density, 5
momentum of acoustic waves, 214

nabla operator, definition, 8
Navier–Stokes equation

analytical solutions, 19
compressible fluids, 13
Couette flow, 22
derivation, 11
dimensionless form, 52
electroosmosis, cylindrical, 131
electroosmosis, planar, 143
FEM formulation, 112
film flow, inclined plane, 21
incompressible fluids, 14
mechanical equilibrium, 20

momentum diffusion, 71
no-slip boundary condition, 19
Poiseuille and EO flow, 146
Poiseuille flow, 23
surface tension, 94, 102

Nernst–Planck equation, 141, 203
Neumann boundary condition, 110
Newton’s second law, 11
NIST, 6
no-slip boundary condition, 19
notation, 7

numbers with SI units, 6
time-derivative, 12

numerical simulation
back-step flow, 54
backstep flow, 116
introduction, 109
Poiseuille flow, 115
software, 109

Ohm’s law, 43, 123, 166
overlap of Debye layers, 144

parallel plates
Couette flow, 22

partial derivative, notation, 8
perturbation theory, 32
photodiode, 2
physical constants, 229
planar-source diffusion, 70
PMMA-based chip, 24
point dipole

definition, 158
potential from, 159

point-source diffusion, 69
Poiseuille flow

arbitrary cross-section, 24
circular cross-section, 27
elliptic cross-section, 25
energy dissipation in, 45
infinite parallel-plate cross-section, 32
numerical simulation, 115
perturbation of circular cross-section, 117
perturbation of circular shape, 32
rectangular cross-section, 28
starting a, 83
stopping a, 78
table of hydraulic resistances, 47
triangular cross-section, 28
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with diffusion, 74
with EO flow, 145

Poisson’s equation, 123
Poisson–Boltzmann equation

cylindrical case, 131
Debye–Hückel approximation, 130
non-linear, 129
planar case, 130
spherical case, 134

polar coordinates, 26
polarization, 124, 157

charge density, 125
polymer chips, 1
porous frit, 148
potential flow, 183
potential from point dipole, 159
pressure

basic concept, 5
equivalent circuit theory, 58
gradient force, 12

Pressure driven flow, Poiseuille flow, 23
pump

capillary, 99
cascade EO pump, 149, 151
EO pump, 59, 147
frit-based EO pump, 149
many-channel EO pump, 148
surface electrode pump, 133
zero-voltage EO pump, 151

Q–p characteristic, 147
quantum mechanical spins, 175

random walk model of diffusion, 65
rate of change of kinetic energy, 44
relative dielectric constant, 125
Reynolds number Re, 52

systems with one length scale, 52
systems with two length scales, 53

Riemann zeta function, 31

scalar fields, 5
scalar product of vectors, 7
Schmidt number Sc, 71
sedimentation potential, 125
separation, 72
shape perturbation of Poiseuille flow, 32, 117
SI units, 6
silicon chips, 1

single-stage zero-voltage EO pump, 151
solids, basic concepts, 2
solution of solutes, 67
sound

speed of, 213
speed of sound, 213
Spherical polar coordinates, 225
spin, current density, 175
steady-state

definition, 19
viscous energy dissipation, 45

Stokes drag
balancing DEP force, 164
electrophoresis, 126
on a sphere, 34

Stokes number NSt, 99
streaming potential, 125
stress tensor σik, 13
substantial (material) time-derivative Dt, 12
superparamagnetism, 173, 179
surface coating of microbeads, 174
surface electrodes in microchannels, 201
surface tension

definition, 92
gradients and Marangoni effect, 102
Navier–Stokes equation, 94, 102
values, 94, 230
Young’s equation, 95
Young–Laplace equation, 94

surface unit vector, 10
susceptibility

electric, 125
magnetic, 176

tables of physical constants, 229
Taylor dispersion

convection-diffusion equation, 74
the resulting concentration, 77

Taylor dispersion coefficient, 77
Taylor expansion

Debye layer overlap, 145
dipole potential, 159
electric field, 162
Poisson–Boltzmann sinh(u), 130
shape perturbation, 33

tensor field
basic concept, 5
gradient of electric field, 157
index notation, 7
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viscous stress tensor, 13
thermal fluctuations

molecular disorder in liquids, 4
number of molecules, 5

time-average of complex products, 166
time-averaged AC DEP force, 166
time-dependent phenomena

Debye layer charging time, 133
time-dependent phenomena, 65

stopping a Poiseuille flow, 78
viscous friction in flows, 44

time-derivative
material (substantial) Dt, 12
partial ∂t, 8
total dt, 8

time-evolution of flow profile, 80
total time-derivative dt, 8
transport theory in electrohydrodynamics, 141
trapping of particles by DEP, 162
Two-phase flow

bubble motion, 188
capillary waves, 183
gravity waves, 183
introudction, 181
Poiseuille flow, 181

unit vector of a surface, 10
units, 6

vector cross product, 9
vector field

basic concept, 5
index notation, 7

vector scalar product, 7
velocity

basic concept, 5
velocity field

at zero-flow, EO, 147
electroosmosis, 142, 145
EO flow with back-pressure, 146
Fourier expansion, 29
Fourier-Bessel expansion, 79
Poiseuille flow, 23
potential, 183, 213

velocity potential, 183, 213
viscosity of water, 229
viscous

dissipation of energy, 43
energy dissipation, steady-state, 45

force, 13
friction, heat generated by, 45
stress tensor σ′ik, 13

water
air-water surface tension, 94, 230
capillary length, 96
density at 20◦C, 3
kinematic viscosity at 20◦C, 71
miscellaneous contact angles, 94, 230
physical constants, 229
viscosity, 229

wave equation in acoustics, 212
waveguide, 2
weak solutions in FEM, 111

yeast cells, 165
Young’s equation, 95
Young–Laplace equation, 94

zero-flow EO pressure peo, 147
zero-voltage EO pump, 151
zeta potential

Debye–Hückel approximation, 130
definition, 129
typical value, 144


